110 resultados para Flow Simulation
Resumo:
The resin transfer molding has gained popularity in the preparation of fiber-reinforced polymer-matrix composites because of its high efficiency and low pollution. The non-uniform inter-tow and intra-tow flows are regarded as the reason of void formation in RTM. According to the process characteristics, the axisymmetric model was developed to study the interaction between the flow in the inter-tow space and that in the intra-tow space. The flow behavior inside the fiber tows was formulated using Brinkman's equation, while that in the open space around the fiber tows was formulated by Stokes' equation. The volume of fluid (VOF) method was applied to track the flow front, and the effects of filling velocity, resin viscosity, inter-tow dimension and intra-tow permeability on fluid pressure and flow front were analyzed. The results show that the flow front difference between the inter-tow and intra-tow becomes larger with the decrease of intra-tow permeability, as well as the increase of filling velocity and inter-tow dimension.
Resumo:
The curing temperature, pressure, and curing time have significant influence on finished thermosetting composite products. The time of pressure application is one of the most important processing parameters in the manufacture of a thermosetting composite. The determination of the time of pressure application relies on analysis of the viscosity variation of the polymer, associated with curing temperature and curing time. To determine it, the influence of the time of pressure application on the physical properties of epoxy-terminated poly(phenylene ether ketone) (E-PEK)-based continuous carbon fiber composite was studied. It was found that a stepwise temperature cure cycle is more suitable for manufacture of this composite. There are two viscosity valleys, in the case of the E-PEK system, associated with temperature during a stepwise cure cycle. The analysis on the effects of reinforcement fraction and defect content on the composite sheet quality indicates that the width-adjustable second viscosity valley provides a suitable pressing window. The viscosity, ranging from 400 to 1200 Pa . s at the second viscosity valley, is the optimal viscosity range for applying pressure to ensure appropriate resin flow during curing process, which enables one to get a finished composite with optimal fiber volume fraction and low void content. (C) 1997 John Wiley & Sons, Inc.
Resumo:
The ori-in of the radial sand ridges (RSRs) in the southern Yellow Sea has been a controversial problem since they were discovered in the early 1960s. To resolve the problem, two key questions need to be answered: (1) was the radial tidal current field in the RSR area generated by the submarine topography, or (2) did it exist before the RSRs occurred? In this study, the M-2 tide and tidal currents in the RSR area were simulated with a two-dimensional tidal model using a flat bottom and a shelving slope topography, the results being then compared with the field data. It is demonstrated that the radial tidal current field in the southern Yellow Sea is independent of bottom topography, and may thus be the controlling factor generating the RSRs. The radial tidal current field probably existed before the RSRs were formed.
Resumo:
To study the relationship between sediment transportation and saltwater intrusion in the Changjiang (Yangtze) estuary, a three-dimensional numerical model for temperature, salinity, velocity field, and suspended sediment concentration was established based on the ECOMSED model. Using this model, sediment transportation in the flood season of 2005 was simulated for the Changjiang estuary. A comparison between simulated results and observation data for the tidal level, flow velocity and direction, salinity and suspended sediment concentration indicated that they were consistent in overall. Based on model verification, the simulation of saltwater intrusion and its effect on sediment in the Changjiang estuary was analyzed in detail. The saltwater intrusion in the estuary including the formation, evolution, and disappearance of saltwater wedge and the induced vertical circulation were reproduced, and the crucial impact of the wedge on cohesive and non-cohesive suspended sediment distribution and transportation were successfully simulated. The result shows that near the salinity front, the simulated concentrations of both cohesive and non-cohesive suspended sediment at the surface layer had a strong relationship with the simulated velocity, especially when considering a 1-hour lag. However, in the bottom layer, there was no obvious correlation between them, because the saltwater wedge and its inducing vertical circulation may have resuspended loose sediment on the bed, thus forming a high-concentration area near the bottom even if the velocity near the bottom was very low during the transition phase from flood to ebb.