198 resultados para Fatigue Crack Nucleation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dynamic stress intensity factor histories for a half plane crack in an otherwise unbounded elastic body are analyzed. The crack is subjected to a traction distribution consisting of two pairs of suddenly-applied shear point loads, at a distance L away from the crack tip. The exact expression for the combined mode stress intensity factors as the function of time and position along the crack edge is obtained. The method of solution is based on the direct application of integral transforms together with the Wiener-Hopf technique and the Cagniard-de Hoop method, which were previously believed to be inappropriate. Some features of solutions are discussed and the results are displayed in several figures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nucleation of microdamage under dynamic loading was investigated through planar impact experiments accomplished with a light gas gun. The microscopic observation of recovered and sectioned specimens showed that microcracks were nucleated only by cracking of brittle particles inside material. However, for comparison the in situ static tensile tests on the same material conducted with a scanning electron microscope showed that the microcracks were nucleated by many forms those were fracture of ductile matrix, debonding particles from matrix and cracking of brittle particles. The quantitative metallographic observations of the specimens subjected to impact loading showed that most of the cracked particles were situated on grain boundaries of the aluminium matrix. These facts suggested the concept of critical size and incubation time of submicroscopic cavities in the dynamic case and the mechanism of embryo-damage induced nucleation by fracture of brittle particles in the aluminium alloy under impact loading was proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The local characteristics of the anti-plane shear stress and strain field are determined for a material where the stress increases linearly with strain up to a limit and then softens nonlinearly. Two unloading models are considered such that the unloading path always returns to the origin while the other assumes the unloading modulus to be that of the initial shear modulus. As the applied shear increases, an unloading zone is found to prevail between a zone in which the material softens and another zone in which the material is linear-elastic even though the crack does not propagate. The divisions of these zones are displayed graphically.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dynamic stress intensity factor history for a semi-infinite crack in an otherwise unbounded elastic body is analyzed. The crack is subjected to a pair of suddenly-applied point loadings on its faces at a distance L away from the crack tip. The exact expression for the mode I stress intensity factor as a function of time is obtained. The method of solution is based on the direct application of integral transforms, the Wiener-Hopf technique and the Cagniard-de Hoop method. Due to the existence of the characteristic length in loading this problem was long believed a knotty problem. Some features of the solutions are discussed and graphical result for numerical computation is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zero thickness crack tip interface elements for a crack normal to the interface between two materials are presented. The elements are shown to have the desired r(lambda-1) (0 < lambda < 1) singularity in the stress field at the crack tip and are compatible with other singular elements. The stiffness matrices of the quadratic and cubic interface element are derived. Numerical examples are given to demonstrate the applicability of the proposed interface elements for a crack perpendicular to the bimaterial interface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present an exact higher-order asymptotic analysis on the near-crack-tip fields in elastic-plastic materials under plane strain, Mode I. A four- or five-term asymptotic series of the solutions is derived. It is found that when 1.6 < n less-than-or-equal-to 2.8 (here, n is the hardening exponent), the elastic effect enters the third-order stress field; but when 2.8< n less-than-or-equal-to 3.7 this effect turns to enter the fourth-order field, with the fifth-order field independent. Moreover, if n>3.7, the elasticity only affects the fields whose order is higher than 4. In this case, the fourth-order field remains independent. Our investigation also shows that as long as n is larger than 1.6, the third-order field is always not independent, whose amplitude coefficient K3 depends either on K1 or on both K1 and K2 (K1 and K2 arc the amplitude coefficients of the first- and second-order fields, respectively). Firmly, good agreement is found between our results and O'Dowd and Shih's numerical ones[8] by comparison.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A detailed analysis of kinking of an interface crack between two dissimilar anisotropic elastic solids is presented in this paper. The branched crack is considered as a distributed dislocation. A set of the singular integral equations for the distribution function of the dislocation density is developed. Explicit formulas of the stress intensity factors and the energy release rates for the branched crack are given for orthotropic bimaterials and misoriented orthotropic bicrystals. The role of the stress parallel to the interface, sigma0 is taken into account in these formulas. The interface crack can advance either by continued extension along the interface or by kinking out of the interface into one of the adjoining materials. This competition depends on the ratio of the energy release rates for interface cracking and for kinking out of the interface and the ratio of interface toughness to substrate toughness. Throughout the paper, the influences of the inplane stress sigma0 on the stress intensity factors and the energy release rates for the branched crack, which can significantly alter the conditions for interface cracking, are emphasized.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a constitutive model of elasticity coupled with damage suggested by Lemaitre et al, [1] is used. The macroscopic stress-strain response of the model includes two stages: strain hardening and strain softening. The basic equation is derived for the anti-plane shear problem. Several lowest order asymptotic solutions are obtained, and assembled for the crack-tip fields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an exact analysis for high order asymptotic field of the plane stress crack problem. It has been shown that the second order asymptotic field is not an independent eigen field and should be matched with the elastic strain term of the first order asymptotic field. The second order stress field ahead of the crack tip is quite small compared with the first order stress field. The stress field ahead of crack tip is characterized by the HRR field. Hence the J integral can be used as a criterion for crack initiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is shown that the variable power singularity of the strain field at the crack tip can be obtained by the simple technique of collapsing quadrilateral isoparametric elements into triangular elements around the crack tip and adequately shifting the side-nodes adjacent to this crack tip. The collapsed isoparametric elements have the desired singularity at crack tip along any ray. The strain expressions for a single element have been derived and in addition to the desired power singularity, additional singularities are revealed. Numerical examples have shown that triangular elements formed by collapsing one side lead to excellent results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A HIGHER-ORDER asymptotic analysis of a stationary crack in an elastic power-law hardening material has been carried out for plane strain, Mode 1. The extent to which elasticity affects the near-tip fields is determined by the strain hardening exponent n. Five terms in the asymptotic series for the stresses have been derived for n = 3. However, only three amplitudes can be independently prescribed. These are K1, K2 and K5 corresponding to amplitudes of the first-, second- and fifth-order terms. Four terms in the asymptotic series have been obtained for n = 5, 7 and 10; in these cases, the independent amplitudes are K1, K2 and K4. It is found that appropriate choices of K2 and K4 can reproduce near-tip fields representative of a broad range of crack tip constraints in moderate and low hardening materials. Indeed, fields characterized by distinctly different stress triaxiality levels (established by finite element analysis) have been matched by the asymptotic series. The zone of dominance of the asymptotic series extends over distances of about 10 crack openings ahead of the crack tip encompassing length scales that are microstructurally significant. Furthermore, the higher-order terms collectively describe a spatially uniform hydrostatic stress field (of adjustable magnitude) ahead of the crack. Our results lend support to a suggestion that J and a measure of near-tip stress triaxiality can describe the full range of near-tip states.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Examined in this work is the anti-plane stress and strain near a crack in a material that softens beyond the elastic peak and unloads on a linear path through the initial state. The discontinuity in the constitutive relation is carried into the analysis such that one portion of the local solution is elliptic in character and the other hyperbolic. Material elements in one region may cross over to another as the loading is increased. Local unloading can thus prevail. Presented are the inhomogeneous character of the asymptotic stress and strain in the elliptic and hyperbolic region, in addition to the region in which the material elements had experienced unloading. No one single stress or strain coefficient would be adequate for describing crack instability.