130 resultados para FPGA, VHDL, Picoblaze, SERDES
Resumo:
介绍一个采用嵌入式微机和FPGA与CPLD技术的通用性CAMAC机箱控制器,它具有三种灵活的数据接口方式;以太网、PCI和VSB。通过以太网连接可以实现灵活的远程数据获取与控制,通过PCI和VSB连接可以组成多机箱高数据流数据获取与控制系统。
Resumo:
针对核物理实验对核反应测量脉冲波形甄别系统的性能要求,提出了基于多片高速A/D和高端FPGA的数字化脉冲波形甄别系统设计方案。高速A/D完成对探测器输出波形信号的数字化,而后通过可编程的方式在FPGA内部采用先进的数字信号处理算法完成对信号的甄别,可以解决模拟电子线路对超大信号难以处理的问题,进而对探测器输出不同粒子特征进行准确提取,实现准确实时地触发高速数据采集主板系统。
Resumo:
介绍了在CSR同步加速器高频控制系统改进项目中,高频前端控制器的改进设计。根据系统改进的具体要求,采用DSP+FPGA双电路板的体系结构,对高频前端控制器各个部分做了详细的设计,并给出了具体的资源消耗结果和设计图。
Resumo:
HIRFL-CSR工程对CSRe冷却装置电子冷却部分的控制系统在实时性和可靠性方面提出了非常高的要求。电子冷却工作环境复杂,各种干扰难以预测。从电子冷却的控制系统改进出发,以实现电子冷却的自动调束为目标,以高端FPGA和ARM嵌入式系统为基础,采用P2P通讯技术和神经元网络算法来实现对电子冷却的自动控制。该控制系统对电子冷却控制的完善提供了先进的硬件平台和软件实现方案。
Resumo:
论述用于兰州重离子加速器冷却存储环(HIRFL-CSR)磁铁电源控制系统的数字控制系统硬件平台设计。该系统基于1mmBGA封装的ALTER corporation的cycloneⅢFPGA芯片,嵌入运行数字调节器软件算法,满足了针对具体被控对象参数要求的调节控制。用ARM(Advanced RISC Machines)作调节控制系统的核心处理器,完成系统的多线程任务处理;同时嵌入千兆光纤接口,实现外接DSP板处理数据的直接传输,提高了系统的实时性。该硬件平台实现了HIRFL-CSR电源系统的稳定、可靠和实时控制。
Resumo:
现在的粒子物理和核物理实验中,大规模探测器得到广泛应用,对后继的电子学系统主要要求能量分辨率好,时间响应快,屏蔽特性好,性能稳定,易于控制,高集成度,高密度等。为了满足这些要求,我们采用经过改进的经典的模拟电路与数字控制电路相结合的方式,将重点讨论系统的控制系统的设计与实现。
Resumo:
在HIRFL-CSR(兰州重离子冷却储存环)电源控制系统中,Kicker电源需要控制器提供高压充电电压基准电压信号和触发信号,采集基准电压信号,将电源充电电压与期望值进行比较,如果有偏差,则进行修正,使实际值与期望值一致。为Kicker电源设计的电源控制器采用DSP作为处理器,采用串行DAC为电源提供基准电压波形,基准电压信号回读用并行ADC来完成。论文首先简要介绍了Kicker电源系统,根据控制器的设计要求,选用TI公司的TMS320VC5402芯片,给出了控制器的总体设计。其次,具体介绍了TMS320VC5402的结构、外围设备,给出了电路设 计原理图,以及与存储器连接电路图,并分别介绍了硬件系统各个部分的电路设计以及FPGA部分设计。再次,介绍了DSP编程环境CCS,给出了FLASH擦写过程以及二次下载原理,并详细论述了基准电压信号发送的编写,并对回读的基准电压信号进行了滤波处理。最后,对电源控制器的设计进行了总结。论文完成了Kicker磁铁电源控制器的硬件设计和底层软件设计,为以后在该硬件平台上下一步工作打下了坚实的基础
Resumo:
踢轨磁铁(Kicker)电源系统是HIRFL-CSR注入引出系统中实现快引出的一个关键元件,主要功能是为踢轨磁铁提供快脉冲励磁电流以产生所需要的快脉冲磁场。Kicker电源提供的是高电压大电流的快脉冲,电流脉冲上升沿和下降沿为150ns,脉冲宽度为650ns,其脉冲峰值电流为2700A,工作周期为10s-17s。因此及时监控Kicker电源闸流管的工作状况以及电流脉冲波形特性至关重要。本文针对踢轨磁铁(Kicker)电源的需要,进行了Kicker电源监测系统的设计,主要针对闸流管误漏导通检测、电流脉冲宽度过宽过窄检测、脉冲宽度测量及脉冲计数等功能提出了电路的工作原理,并设计了具体电路。系统输入端采用光纤接口,而输出端采用了PLC数字I/O接口。由于采用PLC接收监测电路板的信号来完成对Kicker电源的监控报警,基于此编写了相关PLC程序,并调试通过。该监测系统电路板已调试完成,可以很好地完成对Kicker电源系统较为全面的状态监测,方便地对Kicker电源系统状态进行监控。另外,为了解决Kicker电源系统脉冲同步的问题,以满足兰州重离子加速器冷却储存环(HIRFL-CSR)环踢轨磁铁(Kicker)电源对电流脉冲进行适当延迟的要求,还分别设计了ECL高速可程控数字延迟线电路系统和基于CPLD的数字延迟线系统,分析介绍了数字延迟线系统结构、工作原理及PCB版图设计等。ECL高速可程控数字延迟线电路已初步调试通过,而基于CPLD的数字延迟线系统已完成了程序编程及仿真工作,它克服了ECL数字延迟线不能实现零延迟的缺点,且可以通过修改VHDL程序来设置出更多位的可编程数字延迟线,方便灵活
Resumo:
本论文主要解决CSR真空系统的控制实现与连锁保护问题。 HIRFL-CSR(Heavy Ion Research Facility at LanZhou-Cooling Storage Ring兰州重离子冷却储存环)是国家重大科学工程。为了保证CSR正常运行,超高真空系统的平均真空度必须达到6×10-9Pa,超高的真空度来之不易,CSR上任何一处真空设备发生故障,就会破坏真空度,所以CSR必须具有响应速度快、安全可靠,稳定性好的真空控制与连锁保护系统。 HIRFL-CSR真空设备有离子泵电源、分子泵、钛升华泵、阀门、真空计等。分子泵只在粗抽时使用,钛升华泵为间歇升华,因此不需要监控。需要显示和控制的设备为离子泵电源、真空计和真空阀门。通过对CSR上每个真空计的真空度数据的监测和真空阀门状态的采集,一旦真空度降低到一定阈值,立即关闭相应位置阀门(保护真空),并给出故障报警,从而实现真空系统的连锁保护。 真空控制系统以嵌入式处理器ARM、复杂可编程逻辑器件CPLD和微控制器MSP430为核心,实现了远程数据采集、数据显示和自动控制等功能。本系统可以进行现场监控与调试,也可以通过集成的100Mbps以太网接口电路进行远程监测与控制,CSR上各处真空度和真空阀门状态自动传送到中央控制中心,中控中心也可以发送命令查询当前真空设备状态和各种读数。 本文主要介绍了基于ARM、CPLD和MSP430的嵌入式真空控制系统的设计与实现。内容主要包括(1)系统各部分硬件电路设计与真空控制功能实现 ,硬件系统调试 。(2)嵌入式uClinux操作系统构建和在其上进行的应用程序,设备驱动程序,串行通信程序的开发。(3)CPLD的VHDL程序和MSP430的C430程序设计。 本文目的是解决CSR真空控制系统问题,但对于许多远程数据采集与控制等问题的解决有重要参考价值
Resumo:
HIRFL-CSR(Heavy Ion Research Facility at LanZhou-Cooling Storage Ring兰州重离子冷却储存环)是国家重大科学工程,其控制系统是一个庞大的系统,由许多分控制系统组成,高频系统是其重要组成部分之一。加速器的加速过程都是由高频系统来完成的。由于高频控制系统的控制对象就是高频腔体,控制系统的稳定性和输出频率的精确性将直接影响到加速器系统的正常工作,而对于高频系统的状态回读又直接决定了对于高频系统的远程监控能力,所以高频控制系统的设计非常重要。本设计基于现场可编程逻辑门阵列FPGA和数字信号专用处理器DSP搭建, 一方面可以完成从控制中心远程控制高频腔体,另一方面也可以完成对于当前状态的读取,所经过的通道也是多样化的,包括CPCI总线通信,CANBUS总线通信或者是485总线通信。本文的内容包括了1>对于高频控制系统控制对象的分析以及各种控制参数要求。2>组成此系统的硬件部分分析选择以及硬件系统的搭建过程。3>对FPGA和DSP进行程序设计的过程和方法。本文的价值不仅在于对高频系统的控制上,对于其他数据采集系统,远程控制系统以及总线通信和数据分析算法上也有着参考价值
Resumo:
HIRFL-CSR(Heavy Ion Research Facility at LanZhou-Cooling Storage Ring兰州重离子冷却储存环)是国家重大科学工程,其控制系统是一个庞大的系统,由许多分控制系统组成,磁场电源控制系统是CSR控制系统中很重要的一部分。加速器运行的所有过程都为电源所控制,所以我们的控制系统的直接控制对象就是磁场电源。为了保证CSR正常运行,控制过程波形的跟踪精度、速度和稳定度,是数字电源调节器的关键所在。电源控制系统以嵌入式处理器ARM、现场可编程门阵列FPGA为核心,实现了远程数据采集、网络通讯和自动控制等功能。本系统可以进行现场监控与调试,也可以通过集成的100Mbps以太网接口电路进行远程监测与控制,CSR上各处输出电压值和电源运行状态自动传送到中央控制中心,中控中心也可以发送命令查询当前电源设备状态和各种读数。本文主要介绍了基于ARM和FPGA的嵌入式电源控制系统的设计与实现。内容主要包括:(1)系统各部分硬件电路设计与电源控制功能实现 ,硬件系统调试 。(2)装载嵌入式Linux操作系统,测试平台接口信号,通过FPGA生成多路数字PWM波形。本文目的是解决CSR电源控制系统问题,但对于许多远程数据采集与控制等问题的解决有重要参考价值
Resumo:
数字调节器这种控制策略广泛应用于兰州重离子加速器冷却储存环(HIRFL-CSR)电源控制系统及其他工业控制场合,它采用高速微处理器芯片和现场可编程门阵列,对电源的各项性能参数进行精确运算,以控制电源工作总过程。本论文的重点,是数字调节器上基于ARM9处理器和嵌入式Linux操作系统的嵌入式相关技术。论文深入剖析了AT91RM9200处理器和嵌入式Linux的体系结构,给出了引导装入程序Bootloader和Linux内核的启动分析以及移植到硬件平台的整个过程。实现了常见的嵌入式文件系统的移植,以及操作系统外部设备的FPGA驱动。最后通过图形用户接口的应用实现了数字调节器的基本功能
Resumo:
本文主要阐述了CSR数字高频分析系统的同步采样器的研究、设计和实现,该分析系统是基于软件无线电技术构建的。 本文的创新点主要在于提出了一种很好的正交同步欠采样方法,这种基于软件无线电原理的I、Q两路正交同步的采样方法,主要利用了平方律部件、一阶环路滤波器和NCO来对I、Q两路采样触发脉冲上升沿的时间差进行闭环控制,从而实现对高频信号的数据采集和处理。这种方法降低了对AD芯片采样速率要求,同时也为后续的基带信号处理提供了方便。 在整个同步采样系统的实现过程中我采用了功能强大的Matlab7.0作为通信算法的仿真平台,选用了AD6645、StratixIIEP2S60和DSP6416作为主要的硬件平台,并在SynaptiCAD和ModelSim中做出了FPGA的HDL程序设计及波形实现
Resumo:
近代物理所依托兰州重离子冷却储存环(HIRFL-CSR)开展重离子治癌研究。在重离子治癌过程中,需要对束流位置十分精确的控制。本文实现了精确控制重离子束对肿瘤实现三维适形扫描。 对肿瘤切片方向定位采用主动磁扫描方式,通过控制X、Y 扫描铁电源实现束流对肿瘤一层切片中各点的扫描,在治疗过程中需要实现位置变化与辐照剂量的联动。为满足束流位置切换时扫描铁电源的阶跃响应过程,采用了一种新的加速器电源控制方式,通过控制频率变化实现扫描铁电源阶跃响应过程。该方法具有精度高、参数少、响应速度快和实时性好的特点。本文提出了扫描铁电源电压控制的数学模型和实现结构,通过FPGA+DSP+DDS的硬件平台实现该电源控制方法。最终完成了对扫描铁电源高精度的控制。 肿瘤深度方向定位实质上是重离子束流Bragg峰的定位。Bragg峰与束流能量的关系要求重离子束在不同能量间切换,因而需要加速器实现变能加速。本文设计完成了适应变能加速的高频控制器,介绍了高频控制器实现方法,从而满足不同深度肿瘤切片对束流能量的要求。 核心及创新点:(1)实现重离子治癌过程中束流位置和剂量的联动; (2)基于频率调节的扫描铁电源控制器; (3)满足变能加速的高频控制器 从现场的测试和应用结果表明位置控制系统达到了设计要求
Resumo:
CSR控制系统是一个庞大的网络分布式控制系统,它是由许多子系统组成。大规模多级分布式数据交互系统是CSR控制系统中的核心。它是实现CSR束流多能量级连调的核心,它涉及整个CSR控制系统的数据传输以及数据结构定义。大规模多级分布式数据交互系统的开发是基于螺旋模型,采用螺旋模型进行开发能最优实现CSR控制系统的需求以及各开发阶段具有很大的设计灵活性。该大规模多级分布式数据交互系统完全实现了采集数据的上行和控制数据的下行,系统通过网页实现对控制数据的录入以及对采集数据的实时显示。CSR所有数据都存储于Oracle数据库系统,数据库系统是一个三级分布式数据库系统,这样能均衡各前端服务器的资源与性能。前端服务器COM组件通过TCP/IP与ARM控制器和多功能控制器进行数据上行下行的数据交互,以及通过PCI 接口实现与各FPGA板卡进行数据交互。 论文论述了对大规模多级分布式数据交互系统、网页系统、Oracle数据库系统、COM组件库、PCI驱动程序以及各软件系统的设计实现。对大规模多级分布式数据交互系统主要从系统的结构、各级硬件设计和各级软件系统的设计这几个方面进行论述;网页系统主要描述了该系统是基于MVC框架模型的开发设计并介绍了JavaBean与Oracle数据库系统的数据交互;Oracle数据库系统主要从二级Oracle数据库的自动实时更新,和各触发器系统这几方面进行论述;又从各COM接口的功能方法进行对COM组件库的全面论述;PCI驱动程序的设计开发是与各FPGA板卡的数据交互的必须条件。大规模多级分布式数据交互系统的软件开发都采用了螺旋模型对其进行开发。本文的工作是CSR控制系统中的核心部分,具有重要的意义,同时也给同行研究工作者提供了重要的参考。 本文核心及创新点:1、创造性地提出了大规模多级分布式数据交互系统软件工程。2、三级分布式数据库系统的自动实时更新。3、采用web+Oracle+COM+PCI+ARM+FPGA+DSP的多级数据传输。4、设计并实现虚拟加速器。 从现场调试运行和验收的情况来看,大规模多级分布式数据交互系统不论从结构设计,还是软硬件设计开发都达到了设计要求