253 resultados para Evolution of nonequilibrium systems


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pheromones are chemical cues released and sensed by individuals of the same species, which are of major importance in regulating reproductive and social behaviors of mammals. Generally, they are detected by the vomeronasal system (VNS). Here, we first investigated and compared an essential genetic component of vomeronasal chemoreception, that is, TRPC2 gene, of four marine mammals varying the degree of aquatic specialization and related terrestrial species in order to provide insights into the evolution of pheromonal olfaction in the mammalian transition from land to water. Our results based on sequence characterizations and evolutionary analyses, for the first time, show the evidence for the ancestral impairment of vomeronasal pheromone signal transduction pathway in fully aquatic cetaceans, supporting a reduced or absent dependence on olfaction as a result of the complete adaptation to the marine habitat, whereas the amphibious California sea lion was found to have a putatively functional TRPC2 gene, which is still under strong selective pressures, reflecting the reliance of terrestrial environment on chemical recognition among the semiadapted marine mammals. Interestingly, our study found that, unlike that of the California sea lion, TRPC2 genes of the harbor seal and the river otter, both of which are also semiaquatic, are pseudogenes. Our data suggest that other unknown selective pressures or sensory modalities might have promoted the independent absence of a functional VNS in these two species. In this respect, the evolution of pheromonal olfaction in marine mammals appears to be more complex and confusing than has been previously thought. Our study makes a useful contribution to the current understanding of the evolution of pheromone perception of mammals in response to selective pressures from an aquatic environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bat flight poses intriguing questions about how flight independently developed in mammals. Flight is among the most energy-consuming activities. Thus, we deduced that changes in energy metabolism must be a primary factor in the origin of flight in bats. The respiratory chain of the mitochondrial produces 95% of the adenosine triphosphate (ATP) needed for locomotion. Because the respiratory chain has a dual genetic foundation, with genes encoded by both the mitochondrial and nuclear genomes, we examined both genomes to gain insights into the evolution of flight within mammals. Evidence for positive selection was detected in 23.08% of the mitochondrial-encoded and 4.90% of nuclear-encoded oxidative phosphorylation (OXPHOS) genes, but in only 2.25% of the nuclear-encoded nonrespiratory genes that function in mitochondria or 1.005% of other nuclear genes in bats. To address the caveat that the two available bat genomes are of only draft quality, we resequenced 77 OXPHOS genes from four species of bats. The analysis of the resequenced gene data are in agreement with our conclusion that a significantly higher proportion of genes involved in energy metabolism, compared with background genes, show evidence of adaptive evolution specific on the common ancestral bat lineage. Both mitochondrial and nuclear-encoded OXPHOS genes display evidence of adaptive evolution along the common ancestral branch of bats, supporting our hypothesis that genes involved in energy metabolism were targets of natural selection and allowed adaptation to the huge change in energy demand that were required during the origin of flight.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rhodopsin, encoded by the gene Rhodopsin (RH1), is extremely sensitive to light, and is responsible for dim-light vision. Bats are nocturnal mammals that inhabit poor light environments. Megabats (Old-World fruit bats) generally have well-developed eyes, while microbats (insectivorous bats) have developed echolocation and in general their eyes were degraded, however, dramatic differences in the eyes, and their reliance on vision, exist in this group. In this study, we examined the rod opsin gene (RH1), and compared its evolution to that of two cone opsin genes (SWS1 and M/LWS). While phylogenetic reconstruction with the cone opsin genes SWS1 and M/LWS generated a species tree in accord with expectations, the RH1 gene tree united Pteropodidae (Old-World fruit bats) and Yangochiroptera, with very high bootstrap values, suggesting the possibility of convergent evolution. The hypothesis of convergent evolution was further supported when nonsynonymous sites or amino acid sequences were used to construct phylogenies. Reconstructed RH1 sequences at internal nodes of the bat species phylogeny showed that: (1) Old-World fruit bats share an amino acid change (S270G) with the tomb bat; (2) Miniopterus share two amino acid changes (V104I, M183L) with Rhinolophoidea; (3) the amino acid replacement I123V occurred independently on four branches, and the replacements L99M, L266V and I286V occurred each on two branches. The multiple parallel amino acid replacements that occurred in the evolution of bat RH1 suggest the possibility of multiple convergences of their ecological specialization (i.e., various photic environments) during adaptation for the nocturnal lifestyle, and suggest that further attention is needed on the study of the ecology and behavior of bats.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pancreatic RNase genes implicated in the adaptation of the colobine monkeys to leaf eating have long intrigued evolutionary biologists since the identification of a duplicated RNASE1 gene with enhanced digestive efficiencies in Pygathrix nemaeus. The recent emergence of two contrasting hypotheses, that is, independent duplication and one-duplication event hypotheses, make it into focus again. Current understanding of Colobine RNASE1 gene evolution of colobine monkeys largely depends on the analyses of few colobine species. The present study with more intensive taxonomic and character sampling not only provides a clearer picture of Colobine RNASE1 gene evolution but also allows to have a more thorough understanding about the molecular basis underlying the adaptation of Colobinae to the unique leaf-feeding lifestyle. The present broader and detailed phylogenetic analyses yielded two important findings: 1) All trees based on the analyses of coding, noncoding, and both regions provided consistent evidence, indicating RNASE1 duplication occurred after Asian and African colobines speciation, that is, independent duplication hypothesis; 2) No obvious evidence of gene conversion in RNASE1 gene was found, favoring independent evolution of Colobine RNASE1 gene duplicates. The conclusion drawn from previous studies that gene conversion has played a significant role in the evolution of Colobine RNASE1 was not supported. Our selective constraint analyses also provided interesting insights, with significant evidence of positive selection detected on ancestor lineages leading to duplicated gene copies. The identification of a handful of new adaptive sites and amino acid changes that have not been characterized previously also provide a necessary foundation for further experimental investigations of RNASE1 functional evolution in Colobinae.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aminoacyl-tRNA synthetases (AARS) are very important during the protein biosynthesis, which can make the gene sequence be accurately translated into the protein sequence by the specific recognition between AARS and tRNA/amino acids. However, the recog

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The gene duplication, fusion and horizontal transfer are the frequent events during evolution of many proteins, including the aminoacyl-tRNA synthetases (AARSs). However, in this work, it was shown that the main event during evolution of phenylalanyl-tRNA synthetase (PheRS) is a domain loss, and the function/activity of PheRS is not affected by domain losing. Generally, the size of genome and number of genes are increased during evolution from bacteria to eukaryote, but the interesting thing is that the type and number of PheRS domains in eukaryotae are obviously less than those in bacteria. The evolution of PheRS by domain losing seems to be related to the functional evolution of some AARSs from the multiple specificities to the single specificity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There are two oligomeric types of glycyl-tRNA synthetases (GlyRSs) in genome, the alpha(2)beta(2) tetramer and alpha(2) dimer. Here, we showed that the anticodon-binding domains (ABDs) of dimeric and tetrameric GlyRSs are non-homologous, although their catalytic central domains (CCDs) are homologous. The dimeric GlyRS_ABD is fused to the C-terminal of CCD in alpha-subunit, but the tetrameric GlyRS_ABD is to the C-terminal in beta-subunit during evolution. Generally, one species only contains one oligomeric type of GlyRS, but the both oligomeric GlyRSs with the multiple homologous domains can be observed in Magnetospirillum magnetotacticum genome, nevertheless, these homologous domains are probably from different genomes. (C) 2005 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The centromere protein A (CENP-A), a histone H3-like protein, provides an essential role for chromosomal segregation during mitosis and meiosis. In this study we identified ten new CENP-A-like genes (excluding the original CENP-A gene) in cow by searching

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organisms have variable genome sizes and contain different numbers of genes. This difference demonstrates that new gene origination is a fundamental process in evolutionary biology. Though the study of the origination of new genes dated back more than hal

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The origin of new structures and functions is an important process in evolution. In the past decades, we have obtained some preliminary knowledge of the origin and evolution of new genes. However, as the basic unit of genes, the origin and evolution of exons remain unclear. Because young exons retain the footprints of origination, they can be good materials for studying origin and evolution of new exons. In this paper, we report two young exons in a zinc finger protein gene of rodents. Since they are unique sequences in mouse and rat genome and no homologous sequences were found in the orthologous genes of human and pig, the young exons might originate after the divergence of primates and rodents through exonization of intronic sequences. Strong positive selection was detected in the new exons between mouse and rat, suggesting that these exons have undergone significant functional divergence after the separation of the two species. On the other hand, population genetics data of mouse demonstrate that the new exons have been subject to functional constraint, indicating an important function of the new exons in mouse. Functional analyses suggest that these new exons encode a nuclear localization signal peptide, which may mediate new ways of nuclear protein transport. To our knowledge, this is the first example of the origin and evolution of young exons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gene number difference among organisms demonstrates that new gene origination is a fundamental biological process in evolution. Exon shuffling has been universally observed in the formation of new genes. Yet to be learned are the ways new exons originate and evolve, and how often new exons appear. To address these questions, we identified 2695 newly evolved exons in the mouse and rat by comparing the expressed sequences of 12,419 orthologous genes between human and mouse, using 743,856 pig ESTs as the outgroup. The new exon origination rate is about 2.71 x 10(-3) per gene per million years. These new exons have markedly accelerated rates both of nonsynonymous substitutions and of insertions/ deletions (indels). A much higher proportion of new exons have Kappa(a)/Kappa(s) ratios > 1 (where K-a is the nonsynonymous substitution rate and K-s is the synonymous substitution rate) than K do the old exons shared by human and mouse, implying a role of positive selection in the rapid evolution. The majority of these new exons have sequences unique in the genome, suggesting that most new exons might originate through "exonization" of intronic sequences. Most of the new exons appear to be alternative exons that are expressed at low levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The inherent interest on the origin of genetic novelties can be traced back to Darwin. But it was not until recently that we were allowed to investigate the fundamental process of origin of new genes by the studies on newly evolved Young genes. Two indisp

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The regular mammalian X and Y chromosomes diverged from each other at least 166 to 148 million years ago, leaving few traces of their early evolution, including degeneration of the Y chromosome and evolution of dosage compensation. Results: We

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The origin of eukaryotic ubiquitin-conjugating enzymes (E2s) can be traced back to the Guillardia theta nucleomorph about 2500 million years ago (Mya). E2s are largely vertically inherited over eukaryotic evolution [Lespinet, O., Wolf, Y.I., Koonin, E.V.,