120 resultados para Elastische Deformation
Resumo:
The grey system theory studies the uncertainty of small sample size problems. This paper using grey system theory in the deformation monitoring field, based on analysis of present grey forecast models, developed the spatial multi-point model. By using residual modification, the spatial multi-point residual model eras developed in further study. Then, combined with the sedimentation data of Xiaolangdi Multipurpose Dam, the results are compared and analyzed, the conclusion has been made and the advantages of the residual spatial multi-point model has been proved.
Resumo:
The deformation mechanism of a styrene/n-butyl acrylate copolymer latex film subjected to uniaxial tensile stress was studied by small-angle X-ray scattering. The influence of annealing at 23, 60, 80, and 100 degrees C for 4 h on microscopic deformation processes was elucidated. It was demonstrated that the microscopic deformation mechanism of the latex films transformed gradually from nonaffine deformation behavior to affine deformation behavior with increasing annealing temperature.
Resumo:
Deformation behavior of polyethylene/modified montmorillonites with polymerizable surfactant (PE/P-MMT) nanocomposite with strong interfacial interaction was studied by means of morphology observation and X-ray scattering measurements. The orientation of PE chains was accompanied by the orientation of well-dispersed MMT platelets due to the presence of strong interfacial interaction, and both of the orientations were parallel to the deformation direction. The high degree of orientation of MMT platelets and PE chains resulted from the synergistic movement of PE matrix and MMTs, which originated from the presence of a network-like structure.
Resumo:
The deformation mechanism or styrene/n-butyl acrylate copolymer latex films with fiber symmetric crystalline structure subjected to uniaxial stretching was studied using synchrotron small-angle X-ray scattering technique. The fibers were drawn at angles or 0, 35, and 55 degrees with respect to the Fiber axis. In all cases, the microscopic deformation within the crystallites was Found to deviate from affine deformation behavior with respect to the macroscopic deformation ratio. Moreover, the extent of this deviation is different in the three cases. This peculiar behavior can be attributed to the relative orientation of the (111) plane of the crystals, the plane of densest packing, with respect to the stretching direction in each case. When the stretching direction coincides with the crystallographic (111) plane, which is the case for stretching directions of 0 and 55 degrees with respect to the fiber axis, the microscopic deformation deviates less from affine behavior than when the stretching direction is arbitrarily oriented with respect to the crystallographic (111) plan.
Resumo:
Films obtained via drying a polymeric latex dispersion are normally colloidal crystalline where latex particles are packed into a face centered cubic (fcc) structure. Different from conventional atomic crystallites or hard sphere colloidal crystallites, the crystalline structure of these films is normally deformable due to the low glass transition temperature of the latex particles. Upon tensile deformation, depending on the drawing direction with respect to the normal of specific crystallographic plane, one observes different crystalline structural changes. Three typical situations where crystallographic c-axis, body diagonal or face diagonal of the fcc structure of the colloidal crystallites being parallel to the stretching direction were investigated.
Resumo:
Synchrotron small angle X-ray scattering was used to study the deformation mechanism of high-density polyethylene that was stretched beyond the natural draw ratio. New insight into the cooperative deformational behavior being mediated via slippage of micro-fibrils was gained. The scattering data confirm on the one hand the model proposed by Peterlin on the static structure of oriented polyethylene being composed of oriented fibrils, which are built by bundles of micro-fibrils. On the other hand it was found that deformation is mediated by the slippage of the micro-fibrils and not the slippage of the fibrils. In the micro-fibrils, the polymer chains are highly oriented both in the crystalline and in the amorphous regions. When stretching beyond the natural draw ratio mainly slippage of micro-fibrils past each other takes place. The thickness of the interlamellar amorphous layers increases only slightly. The coupling force between micro-fibrils increases during stretching due to inter-microfibrillar polymer segments being stretched taut thus increasingly impeding further sliding of the micro-fibrils leading finally to slippage of the fibrils.
Resumo:
High-density polyethylene with shish-kebab structure, prepared by a melt extrusion drawing, was employed to investigate the effect of the well-defined lamellar orientation on the deformation characteristics under uniaxial tensile deformation along the drawing direction. This was done by investigating the true stress-true strain dependencies at different strain rates, recovery properties, and stress relaxation measurements. Measurements were complemented by recording in-situ wide-angle X-ray scattering patterns during the deformation process. The oriented samples showed not only a higher modulus, but different from analogous isotropic samples, a homogeneous deformation without necking. The true strain associated with the onset of fibrillation was determined. Because of the preorientation, it is shifted to 0.3, which is below the value 0.6 of the isotropic counterpart. The main finding is a strong enhancement of the Viscous force, as was revealed by stress relaxation experiments; the viscous force takes up 70% of the total stress. The presence of shish-kebabs, i.e., interconnected lamellae in a stack, seems to be responsible for the high viscous force in the oriented samples. The absence of necking has to be ascribed to the high viscous force.
Resumo:
ABS/PVC blends were prepared over a range of compositions by mixing PVC, SAN, and PB-g-SAN. All samples were designed to have a constant rubber level of 12 wt % and the ratio of total-SAN to PVC in the matrix of the blends varied from 70.5/17.5 to 18/80. Transmission electron microscope and scanning electron microscope have been used to study deformation mechanisms in the ABS/PVC blends. Several different types of microscopic deformation mechanisms, depending on the composition of blends, were observed for the ABS/PVC blends. When the blend is a SAN-rich system, the main deformation mechanisms were crazing of the matrix. When the blend is a PVC-rich system, crazing could no longer be detected, while shear yielding of the matrix and cavitation of the rubber particles were the main mechanisms of deformation. When the composition of blend is in the intermediate state, both crazing and shear yielding of matrix were observed. This suggests that there is a transition of deformation mechanism in ABS/PVC blends with the change in composition, which is from crazing to shear deformation.
Resumo:
Core-shell polybutadiene-graft-polystyrene (PB-g-PS) rubber particles with different ratios of polybutadiene to polystyrene were prepared by emulsion polymerization through grafting styrene onto polybutadiene latex. The weight ratio of polybutadiene to polystyrene ranged from 50/50 to 90/10. These core-shell rubber particles were then blended with polystyrene to prepare PS/PB-g-PS blends with a constant rubber content of 20 wt%. PB-g-PS particles with a lower PB/PS ratio (<= 570/30) form a homogeneous dispersion in the polystyrene matrix, and the Izod notched impact strength of these blends is higher than that of commercial high-impact polystyrene (HIPS). It is generally accepted that polystyrene can only be toughened effectively by 1-3 mu m rubber particles through a toughening mechanism of multiple crazings. However, the experimental results show that polystyrene can actually be toughened by monodisperse sub-micrometer rubber particles. Scanning electron micrographs of the fracture surface and stress-whitening zone of blends with a PB/PS ratio of 70/30 in PB-g-PS copolymer reveal a novel toughening mechanism of modified polystyrene, which may be shear yielding of the matrix, promoted by cavitation.
Resumo:
The plateau modulus of polyphenylquinoxaline (PPQ-E) films has been obtained by from their dynamic mechanical properties curves. Using these data, the entanglement density of PPQ-E films, 2.37 X 10(26) m(-3) Or 0.39mmol/cm(3),has been estimated. The deformation mechanism of polyphenylquinoxaline (crazing mechanism,or shear yielding mechanism, or both), can be predicted according to entanglement density values. The changes in morphology of PPQ-E films during tensile deformation have been observed by Polarized Light Microscope. The result shows that crazing first appears in the tensile process, then shear yielding appears. It needs to point out that the craze is terminated by micro-shear band and the direction of craze in shear band is also changed,which prevents the craze growth into crack and avoid the failure of material. This result is in accordance with the prediction on the basis of the entanglement density data. The morphology and structure of crazes in PPB-E thin film have been determined by TEM. The craze morphology of PPQ-E is mainly fibril craze consisting of micro-fibrils and micro-voids,the interface between bulk and craze is distinct. Multiply crazes, blunting of craze tip and shear deformation zone are also observed. This result reflects the accordance of entanglement density and the morphology and structure of crazes.
Resumo:
The toughness of polypropylene (PP)/ethylene-propylene-diene monomer rubber (EPDM) blends containing various EPDM contents as a function of the tensile speed was studied. The toughness of the blends was determined from the tensile fracture energy of the side-edge notched samples. A sharp brittle-tough transition was observed in the fracture energy versus interparticle distance (ID) curves when the crosshead speed < 102.4 mm/min. It was observed that the brittle-ductile transition of PP/EPDM blend occurred either by reducing ID or by decreasing the tensile speed. The correlation between the critical interparticle distance and tensile deformation rate was compared with that between the critical interparticle distance and temperature for PP/EPDM blends. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
Blends of HDPE in more LDPE, with appropriate heat treatment, produce a dispersion of separate entities of HDPE in a matrix of LDPE. The system offered an especially favourable means of studying the deformation of melt-crystallized lamellae. It has been found that sheaf-like spherulites are transformed under tensile deformation into hourglass shapes i.e. a double cone aligned along the drawing direction with origin in the center of the object. This is a consequence of different modes of deformation according to the relation of an individual lamella to the tensile axis. The work shows that the lamellae have not undergone melting and recrystallization in the deformation process at room temperature.
Resumo:
In corrosion medium, metals can deform under tensile stress and form a new active surface with the anodic dissolution of the metals being accelerated. At the same time, the anodic dissolution may accelerate the deformation of the metals. The synergy can lead to crack nucleation and development and shorten the service life of the component. Austenitic stainless steel in acidic chloride solution was in active dissolution condition when stress corrosion cracking (SCC) occurred. It is reasonable to assume that the anodic dissolution play an important role, so it's necessary to study the synergy between anodic dissolution and deformation of austenitic stainless steels. The synergy between deformation and anodic dissolution of AISI 321 austenitic stainless steel in an acidic chloride solution was studied in this paper. The corrosion rate of the steel increased remarkably due to the deformation-accelerated anodic and cathodic processes. The creep rate was increased while the yield strength was reduced by anodic dissolution. The analysis by thermal activation theory of deformation showed a linear relationship between the logarithm of creep rate and the logarithm of anodic cur-rent. Besides, the reciprocal of yield strength was also linearly dependent on the logarithm of anodic current. The theoretical deductions were in good agreement with experimental results.
Resumo:
Rate of hydrogen permeation was measured under static as well as dynamic mechanical deformation conditions, Cylindrical tensile test specimens were used for the study and hydrogen permeation was measured electrochemically, It was observed that the hydrogen diffusivity decreased as plastic deformation increased for the static deformation experiments while elastic deformation had no significant effect on diffusivity but increased the steady state permeation flux, For the dynamic loading experiment, an elastic deformation increased the hydrogen permeation rate almost linearly. Onset of plastic deformation led a sudden decrease of permeation rate and the reduced rate was rapidly recovered when the plastic deformation ceased. These rapid changes in the permeation rates were explained that the absorbed hydrogen was trapped by dislocations and creation rate and density of dislocations changed drastically when plastic deformation started and stopped.