120 resultados para ETCHED IMPLANT SURFACES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermal influence on the electrical conductivity of polyimide film surfaces induced by KrF-laser irradiation was investigated, The formation of conducting phases was demonstrated to be highly temperature sensitive, as evidenced by strong dependence of the electrical conductivity on repetition rate and ambient temperature. XPS and Raman studies showed that the efficiency of the formation of conducting phases could be enhanced by the increase of temperature on irradiated polyimide film surfaces. After the disruption of polymeric chain, the carbon-enriched clusters remained on the irradiated polyimide film surfaces organized into polycrystalline graphite-like clusters responsible for electrical conductivity. The resulting dangling bonds from the decomposition process of polyimide acted as centers for the rearrangement of carbon-enriched clusters. It is suggested that the motion of radicals was promoted with increasing the temperature. Therefore the formation of polycrystalline graphite-like clusters benefited from high remaining temperature on the irradiated polyimide film surfaces. These results revealed that thermal influence played a dominant role on the formation of conducting phases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present a new method of fabricating metal nanoparticles on carbon substrates through molecular design. Scanning tunneling microscopy measurements show that the electrochemically synthesized Ag nanoparticles are homogeneously dispersed on the modified highly oriented pyrolytic graphite (HOPG) surface with a narrow particle size distribution. Moreover, the size and number density of Ag nanoparticles on the grafted HOPG surface can be easily changed through control of the experimental conditions. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The behavior of electrical conductivity for excimer laser irradiated polyimide films in the vicinity of the critical number of laser shots was described by three-dimensional percolative phase transition model. It is: found that electrical conductivity changed more rapidly than that predicted by the percolation model. Thus, the change in microstructure with increasing number of laser shots was analyzed by FT-IR Raman spectrometry and laser desorption time-of-flight mass spectrometry. It is demonstrated that not only the number but also the average size of graphite particles on the irradiated polyimide film surfaces increased with increasing number of laser shots. These results were helpful to better understand the critical change in electrical conductivity on the irradiated polyimide film surfaces. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A conducting layer with the conductivity of 1.2 Omega(-1)cm(-1) stripped in a solvent from KrF-laser-irradiated polyimide thin film is taken as a sample to determine the microstructure of the conducting layer. Fourier-transform infrared and X-ray photoelectron spectroscopies show the formation of the carbon-rich clusters after irradiation. The element analysis gives the atomic ratio of C:H:N:O for the carbon-rich cluster as 60:20:3:1. Wide-angle X-ray diffraction indicates that the conducting layer is mainly amorphous carbon with a small amount of the short-range ordered carbon-rich clusters. This study suggests a structural model with three-layer carbon sheets linked together in a random fashion for the short-range ordered carbon-rich clusters. The interplanar spacing is 3.87 Angstrom and the layer diameter 25 Angstrom. The transport model of variable-range hopping in three dimensions is used to explain the conducting behavior of the conducting layer. In our case, the short-range ordered carbon-rich clusters are assumed to be conducting islands dispersed in the amorphous carbon-rich cluster matrix.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on scanning tunnelling microscopy and electrochemical measurements, orientation and electrocatalytic function of riboflavin adsorbed on carbon substrates have been described for the first time. Scanning tunnelling micrographs show clearly that tip induction may result in an orientation change of the adsorbed riboflavin molecule on highly oriented pyrolytic graphite from the initially vertical orientation to the stable flat form. The adsorbed riboflavin as an effective mediator can accelerate the reduction of dioxygen which accepts two electrons from the reduced riboflavin to generate hydrogen peroxide. The rate constants of the electrocatalytic reaction in various pH solutions were determined using a rotating disc electrode modified with riboflavin. The pH effect and possible catalytic mechanism are discussed in detail.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flavin adenine dinucleotide (FAD) was modified onto the highly oriented pyrolytic graphite (hopg) and glassy carbon electrode (gee) surfaces with three methods, respectively. Corresponding image analysis for FAD-modified hopg surfaces has been performed by scanning tunnelling microscope (STM) for the first time. The molecular resolution STM image of FAD adsorbed on the freshly-cleaved hopg was obtained, the quantitative size determination suggests that the FAD molecules adsorb side lying on the substrate surface. The anodization treatment of hopg surface yields many pits, which were clearly observed under STM. These pits provide active sites on the hopg surface for modification and the treated hopg can strongly adsorb FAD molecules, the latter exhibiting an irregular cluster structure on such a surface. When FAD was electrochemically deposited on the substrate surface, a chain structure was successfully observed. The adsorbed FAD on anodized glassy carbon electrode (gee) surface can effectively catalyze the reduction of glucose oxidase, hemoglobin and myoglobin, with a large decrease in the overvoltage, whereas the deposited FAD film exhibits excellent electrocatalysis towards dioxygen reduction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scanning electron microscopy of the surfaces of the seaweeds Laminaria japonica, haploid Porphyra yezoensis, Ulva pertusa and the diploid conchocelis of P. yezoensis and P. haitanensis revealed Vibrio and Micrococcus to be abundant on the surfaces of U. pertusa and P. yezoensis. Vibrio, Flavobacterium, Pseudomonas, Staphylococcus, Bacillus, Corynebacterium and other genera were isolated from the surfaces of L. japonica.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We conducted this study to assess the diversity of bacteria associated with the surfaces of algae based on 16S rDNA sequence analyses. Twelve strains of bacteria were obtained from the surfaces of the following four species of algae: Gracilaria textorii, Ulva pertusa, Laminaria japonica, and Polysiphonia urceolata. The isolated strains of bacteria can be divided into two groups: Halomonas and Vibrio, in physiology, biochemical characteristics and 16S rDNA sequence analyses. The phylogenetic tree constructed based on 16S rDNA sequences of the isolates shows four obvious clusters, Halomonas venusta, Vibrio tasmaniensis, Vibrio lentus, and Vibrio splendidus. Isolates from the surface of P. urceolata are more abundant and diverse, of which strains P9 and P28 have a 16S rDNA sequence very similar (97.5%-99.8%) to that of V. splendidus. On the contrary, the isolates from the surfaces of G textorii, U. pertusa and L. japonica are quite simple and distribute on different branches of the phylogenetic tree. In overall, the results of this study indicate that the genetic relationships among the isolates are quite close and display a certain level of host species specificity, and alga-associated bacteria species are algal species specific.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been found that microbial communities play a significant role in the corrosion process of steels exposed in aquatic and soil environments. Biomineralization influenced by microorganisms is believed to be responsible for the formation of corrosion products via complicated pathways of electron transfer between microbial cells and the metal. In this study, sulfide corrosion products were investigated for 316L stainless steel exposed to media with sulfate-reducing bacteria media for 7 weeks. The species of inorganic and organic sulfides in the passive film on the stainless steel were observed by epifluorescence microscope, environmental scanning electron microscope combined with energy dispersive spectroscopy and X-ray photoelectron spectroscopy. The transformation from metal oxides to metal sulfides influenced by sulfate-reducing bacteria is emphasized in this paper. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the reactions of nitrone, N-methyl nitrone, N-phenyl nitrone and their hydroxylamine tautomers (vinyl-hydroxylamine, N-methyl-vinyl-hydroxylamine and N-phenyl-vinyl-hydroxylamine) on the reconstructed C(100)-2 x 1 surface have been investigated using hybrid density functional theory (B3LYP), Moller-Plesset second-order perturbation (MP2) and multi-configuration complete-active-space self-consistent-field (CASSCF) methods. The calculations showed that all the nitrones can react with the surface "dimer" via facile 1.3-dipolar cycloaddition with small activation barriers (less than 12.0 kJ/mol at B3LYP/6-31g(d) level). The [2+2] cycloaddition of hydroxylamine tautomers on the C(100) surface follows a diradical mechanism. Hydroxylamine tautomers first form diradical intermediates with the reconstructed C(I 00)-2 x I surface by overcoming a large activation barrier of 50-60 kJ/mol (B3LYP), then generate [2+2] cycloaddition products via diradical transition states with negligible activation barriers. The surface reactions result in hydroxyl or amino-terminated diamond surfaces, which offers new opportunity for further modifications. (C) 2007 Elsevier B.V. All rights reserved.