114 resultados para Disturbance
Resumo:
为了实现冷轧生产线的均衡生产,提出了机组排产作业计划过程中的投料混合比算法。在该算法中,首先根据各道工序机组的生产能力、产品类型、故障和生产过程中的随机干扰等,计算在生产计划期内依概率平均的最佳缓冲区库存量,该库存量能够使机组实现均衡生产;其次,在现有在制库存条件下,考虑生产机组的生产能力和生产的产品类型,提出了本工序机组负荷平衡的机组排产作业计划在线生成方法;最后,结合上述两种方法,利用程序迭代搜索方式求解,既保证本道工序机组负荷平衡,也保证下道工序最佳库存的优化投料混合比,保证了冷轧生产线均衡生产的可行性。
Resumo:
Magnetic storm is a kind of severe disturbances in the whole solar-earth electromagnetic space. It has significant effects on communication, electric power, oil transport pipe and human activities in space. Therefore, magnetic storms are worth for applications systems, not only being a favorable issue for scientists. In this paper, the spatial and temporal distributions of the magnetic fields produced by the magnetosphere-ionosphere current systems during storms are studied. Four parts are included in this paper decomposion of different disturbances with different origins, topological structure of the ring current, the asymmetric characteristics of the ring current, and the statistic peculiarities of the day-to-day variability (DTD) of Sq. 1 The decomposition of magnetic disturbances at mid-low latitudes and its evolutions during storms Transient variations in the geomagnetic field recorded at mid-low latitudes mainly include the storm-time variation (Dst), solar quiet daily variation (Sq) and disturbance daily variation (SD). With the data of the geomagnetic meridian chain observatories in China, 25 storms during the period of 1997 to 1999 have been analyzed. According to the features of different variations, a method of “three-steps decomposition” is developed by using the method of Natural Orthogonal Components (NOC), Correlation Analysis and Fourier Analysis to separate those three components in turn. The results show that, the first eigenmode by the MNOC clearly describing the special distribution and temporal evolution of storm-time variation, in addition, Correlation Analysis and Fourier Analysis offer a useful method to extract the Sq and SD variations. The latitudinal shift of the Sq current focus seems to be the principal reason of the day-to-day variaitons in the daily range of Sq. The magnitude of SD reaches a maximum during the main phase, and then gradually decreases. 2 The topology structure of the ring current during storms Both the mechanism of the ring current and the geomagnetic data suggest that the central plane of the ring current is declining to the geomagnetic equator plane with a tilt angle δ. Using the H and Z component data at two stations in a meridian chain, we deduce a new parameter describing the invariable peculiarity of different storms. Then the δ angle is calculated by using the data from a meridian chain and tested with the ERC model. Finally the deduced tilt angles are used to modify Dst index. 3 The asymmetric characteristics of the ring current during storms The variations of the geomagnetic field at mid-low latitudes show a significant dawn-dusk asymmetry, resulting from the superposition of the fields from the symmetric ring current and the partial ring current. On the basis of the data from the 20°E, 30°E meridian chains and 30°N latitudinal chain, the dawn-dusk asymmetry is investigated by using three methods, namely, statistic analysis, ring current model calculation and typical event analysis. This characteristic implies the asymmetry of the spatial distribution of the ring current. In addition, during the main phase after the sudden commencement (SC), H field increases and reaches maximum around noontime, implying the effect of the Chapman-Ferraro current. 4 The statistic characteristics of the day-to-day variability and its mechanism The day-to-day variability of the geomagnetic Sq field is studied by using the magnetic data from a meridian chain of magnetometers along 120° E longitude. The method of NOC is applied to separate the Sq variation from complicated disturbances. The first eigenmode with the largest eigenvalue represents fairly well the Sq variation with a conspicuous day-to-day variability in the daily range. For the stations on the same north- or south-side of the Sq current system focus, the day-to-day variations show a positive correlation. In contrast, for the stations on the different sides of the Sq focus, they show a negative correlation, suggesting an important role of latitudinal shift of the Sq current system focus to the day-to-day variability of the Sq daily range. The Sq daily range is correlated with the magnetic indices Ap and Dst in a peculiar way: on some severe disturbed days, noticeably enhancements of the Sq are observed, implying increases of the ionospheric conductivities and/or tidal wind velocities; on other severe disturbed days, however, dramatically reduced Sq variations occur, suggesting dominant effects of the ‘disturbance dynamo’ process.
Resumo:
As a key issue of ionospheric weather study, systemic studies on ionospheric storms can not only further improve our understanding of the response of the ionosphere to solar and geomagnetic disturbances, but also help us to reveal the chemical, dynamic and electro-dynamic mechanisms during storms. Empirical modelling for regional ionospheric storm is also very useful, because it can provide us with tools and references for the forecasting and further practical application of ionospheric activity. In this thesis, we focus on describing and forecasting of ionospheric storms at middle and low latitudes. The main points of my investigations are listed as follows. (1) By using magnetic storms during the period over 50 years, the dependence of the type, onset time and time delay of the ionospheric storms on magnetic latitude, season and local time at middle and low latitudes in the East-Asian sector are studied. The results show that the occurrences of the types of ionospheric disturbances differ in latitude and season. The onset of the ionospheric storms depends on local time. At middle latitudes, most negative phase onsets are within the local time interval from night to early morning, and they rarely occurred in the local noon and afternoon sectors. At low latitudes, positive phases commence most frequently in the daytime sector as well as pre-midnight sector. The average time delays for both the positive and negative ionospheric storms increase with descending latitudes. The time delay has significant dependence on the local time of main phase onset (MPO). The time delay of positive response is shorter for daytime MPO and longer for night-time MPO, whereas the opposite applies for negative response. (2) Based on some previous researches, a primary empirical model for mid-latitude ionospheric disturbance is set up. By fitting to the observed data, we get a high accuracy with a mean RMSE of only 12-14% in summer and equinox. The model output has been compared with the output of STORM model, and the results show that, our model is much better than STORM in summer and a little better for some mid-latitude stations at equinox. Especially, for the type of two-step geomagnetic storm, our model can present twice descending of foF2 very well. In addition, our model can forecast positive ionospheric storms.
Resumo:
Acoustic Gravity waves (AGW) play an important role in balancing the atmospheric energy and momentum budget. Propagation of gravity wave in the atmosphere is one of the important factors of changing middle and upper atmosphere and ionosphere. The purpose of this dissertation is to study the propagation of gravity wave in a compression atmosphere whit means of numerical simulation and to analyze the response of middle and upper atmosphere to pulse disturbance from lower atmosphere. This work begins with the establishment of 2-D fully nonlinear compressible atmospheric dynamic model in polar coordinate, which is used ton numerically study gravity wave propagation. Then the propagation characteristics of acoustic gravity wave packets are investigated and discussed. We also simulate the response of middle and upper atmosphere to pulse disturbance of lower atmosphere in background winds or without background winds by using this model and analyze the data we obtained by using Fourier Transform (FT), Short-time Fourier Transform (STFT) and Empirical Mode Decomposition (EMD) method which is an important part of Hilbert-Huang Transform (HHT). The research content is summarized in the following: 1. By using a two-dimensional full-implicit-continuous-Eulerian (FICE) scheme and taking the atmospheric basic motion equations as the governing equations, a numerical model for nonlinear propagation of acoustic gravity wave disturbance in two-dimensional polar coordinates is solved. 2. Then the propagation characteristics of acoustic gravity wave packets are investigated and discussed. Results of numerical simulation show that the acoustic gravity wave packets propagate steadily upward and keep its shape well after several periods. 3. We simulate the response of middle and upper atmosphere to pulse disturbance of lower atmosphere in background winds or without background winds by using this model, and obtain the distribution of a certain physical quantity in time and space from earth’s surface to 300km above. The results reveal that the response of ionosphere occurs at a large horizontal distance from the source and the disturbance becomes greater with increasing of height. The situation when the direction of the background wind is opposite to or the same as the direction of disturbed velocity of gravity-wave is studied. The results show that gravity wave propagating against winds is easier than those propagating along winds and the background wind can accelerate gravity wave propagation. Just upon the source, an acoustic wave component with period of 6 min can be found. These images of simulation are similar to observations of the total electron content (TEC) disturbances caused by the great Sumatra-Andaman earthquake on December 26 in 2004. 4. Using the EMD method the disturbed velocity data of a certain physical quantity in time and space can be decomposed into a series of intrinsic mode function (IMF) and a trend mode respectively. The results of EMD reveal impact of the gravity wave frequency under the background winds.
Resumo:
This thesis focuses on the present-day thermal field features, evolution and their connections to hydrocarbon generation of the three continental margin basins-the Yinggehai (Yingge Sea), Qiongdongnan(southeast Qiong), and Pear River Mouth basins-in northern South China Sea, based on available data from drillings, loggings, seismic cross-sections, BHTs, thermal indicators (Ro%, inclusion, etc) and geopressure measurements. After studying of present-day distribution of geothermal field and thermal disturbance of fluid in the sedimentary strata, the author discovered that the distribution of gas fields in Yinggehai Basin are closely related to the distribution of anomalously high thermal gradient area, whereas it is not the case for the Pear River Mouse Basin. And detailed processing of the fluid inclusion data indicates that geothermal fluids activated frequently in this area, and they may mainly be derived upward from the overpressure and hydrocarbon-generating beds, 3000-4500 m in depth. Therefore, the abnormal gradients in sedimentary beds were mainly caused by the active geothermal fluids related to hydrocarbon migrating and accumulating in this area. Because of the effect of overpressure retarding on vitrinite reflectance, the thermal indicators for thermal history reconstruction should be assessed before put into use. Although some factors, such as different types of kerogen, heating ratio, activities of thermal fluids and overpressure, may have effects on the vitrinite reflectance, under the circumstance that thermal fluids and overpressure co-exist, overpressure retarding is dominant. And the depth and correction method of overpressure retarding were also determined in this paper. On the basis of reviewing the methods of thermal history studies as well as existing problems, the author believes that the combination of thermal-indicator-inversion and tectono-thermal modeling is an effective method of the thermal history reconstruction for sedimentary basins. Also, a software BaTherMod for modeling thermal history of basins was successfully developed in this work. The Yinggehai Basin has been active since Tertiary, and this was obviously due to its tectonic position-the plate transition zone. Under the background of high thermal flow, long-term quick subsidence and fluid activities were the main reasons that lead to high temperature and overpressure in this basin. The Zhujiangkou Basin, a Tertiary fault-basin within the circum-Pacific tectonic realm, was tectonically controlled by the motion of the Pacific Plate and resembles the other petroliferous basins in eastern China. This basin developed early, and characterized intensive extension in the early stage and weak activity in the later stage of its development. Whereas the Qiongdongnan Basin was in a weak extension early and intensity of extension increased gradually. The relative geographical locations and the extensional histories of three basins ilustrate that the northern continental margin of South China Sea spread from south to north. On the other hand, the Qiongdongnan and Yinggehai Basins may have been controlled by the same tectonic regime since later Tertiary, whereas the Zhujiangkou Basin was not meaningfully influenced. So, the tectono-thermal evolution character of the Qiongdonnan basin should be closely to the other two. It may be concluded that the three basins have been developed within the active continental margin since Tertiary, and the local lithosphere might undergo intensive extension-perhaps two or three times of episodic extension occurred. Extension lead to large tectonoc subsidence and extreme thick Tertiary sediments for hydrocarbon generation in the basins. In response to the periodic extension of the basins, the palaeothermal flow were also periodical. The three basins all have the characteristics of multi-phase thermal evolutions that is good for oil-gas generation. And the overpressure expands the depth range of oil-gas habitat, which is meaningful to petroleum exploration in this region.
Resumo:
Two problems are studied in this thesis, the relationship of the magneto-spheric - ionospheric current systems during storms, and the effects of the main field to the space environment. The thesis includes three parts. 1. Magnetic disturbances caused by magnetospheric - ionospheric current systems Transient variations of the geomagnetic field at middle-low latitudes are mainly caused by the ionospheric dynamo current (IDC), the symmetric ring current (SRC), the partial ring current-region II field-aligned current-ionospheric current system (PRFI), and the region I field-aligned current-ionospheric current system (FACI). The storm on May 1 ~ 6, 1998 is analyzed. Firstly, the S_q-field caused by IDC current is removed by using the modified Hibberd's method in which the effect of SRC is considered. The neglect of SRC-field can give as much as 40% error in S_q-field evaluation. Secondly, the disturbance fields at the middle and low latitudes are separated according to their origins. As a result, the disturbance caused by FACI-current is an important part of the asymmetrical depression of H-component in middle and low latitudes during storms. The results show that the relative intensity of the Sq-field increases in the main phase of the storm and decreases in the recovery phase. The latitudinal gradient of the Sq-field is positive during the whole storm. The storm of May 1 ~ 6, 1998 contains two events. In the first event on May 2, the SRC-field is similar to Dst index. But in the second event on May 4 ~ 5, the SRC-field delays to Dst index, and the SRC-field depresses while the PRFI- and FACI-fields recovery. 2. Analysis of S_q~p variation in CGM coordinates In order to study the conjugation of geomagnetic variations between northern and southern hemispheres, we use the corrected geomagnetic coordinates (CGM) instead of the geomagnetic coordinates (GM) to analyze the S_q~P equivalent current system. The CGM coordinates are built up by International Geomagnetic Reference Field (IGRF) model. The S_q~p variations and equivalent current systems in the northern and southern polar regions are more symmetrical in CGM coordinates than in GM co-ordinates. This fact implies that the current distributions in polar regions are governed by the configuration of the geomagnetic field lines. As the elaborate structure of S_q~p current system in quiet time is obtained, we summarize the seasonal variation of the electrojet in quiet time. 3. The magnetospheric configuration of non-parallel-dipole model The magnetospheric configurations are calculated for two possible geomag-netic field models during the geomagnetic field reversals. These models are the dipole field with the axis to the sun and the quadrupole field model. We use the finite element method to solve the magnetic equation, and use the surface evolution method to solve the equilibrium equation. The results show that the main field greatly affects the space environment.
Resumo:
Under the auspices of the 'knowledge-Innovation Program' of CAS, Institute of Geology and Geophysics has established the Broadband Seismic Laboratory. A new kind of 24-bit high-resolution seismograph DAS24-3B has been designed and manufactured in an effort of developing China's own technology of seismic array. Since these instruments will primarily be used in field operation, there is a need to optimize the system software of data acquisition system (DAS) to enhance its stability, compatibility and maintenance. The design ideas of the system software of DAS24-3B are partly learned from the advanced DAS 72A-08. In this system there are two exclusive communication programs DNAPI-COM1 and DNAPI-LPT1, which are suitable for all standard industrial computers with ECP parallel port and serial port. By these exclusive parallel and serial communication interface the system software is split into three parts, acquisition program, user's control program and graphical display program, which can function well in separate units and can run correctly in whole. The three parts of DAS24-3B's system software possess different functions and advantages. The function of acquisition program is to control the process of seismic data acquisition. DAS24-3B system reduced its power and harddisk read-write disturbance by using the extended memory attached to its CPU, which functions as enlarging the data buffer of system and lessening the times of harddisk read-write operations. Since GPS receiver of DAS is strongly sensitive to the around environment and has the possibility of signal loss the acquisition program has been designed with the ability to automatically trail the GPS locked time. The function of user's controlling program is to configure the system's work environment, to inform the user's commands to DAS, to trail the status of DAS in real-time. The function of graphical display program is to illustrate data in figures, to convert data file into some common formatted file, to split data file in parts and combine data files into one. Both user's control program and graphical display program are API (Application Programming Interface) in window 95/98 system. Both possess the features of clearness and friendship by use of all kind of window controls, which are composed by menu, toolbar, statusbar, dialogue box, message box, edit box, scrollbar, time control, button and so on. Two programs of systemic exception handles are provided to treat the trouble in field. The DAS24-3B DAS has been designed to be easier to use-better ability, more stable and simpler. It has been tested in field and base station and has been proved more suitable for field operation of seismic array than other native instruments.
Resumo:
Yuanmou area lies on the southeastern edge of the Tibetan Plateau, the middlesegment of Yunnan-Sichuan North-South Extending Tectonic Belt and the upper reaches of the Yangztze River, which is renowned for its thick late Cenozoic fluvial-lacustrine sequences that yield rich mammalian fossils including hominoid and early human. The sediments provides great potentials for understanding the relationships between uplift of the Tibetan Plateau, evolution of hominoids and other mammalian and evolution and formation of basins in Southwest China since late Miocene. However, lithostratigrphic and chronologic views on them are controversial and hinder further discussion of the relationships of them. To this end, we selected the Baozidongqing section and the Dapoqing section to carry out systematic lithostratigraphic, magnetostratlgraphic and environmental magnetism researches in this area.The Baozidongqing section was dated to about 10.95-7.17 Ma. The age estimation of the topmost hominoid-bearing layer was about 7.43-7.17 Ma. Rock magnetic results show that the dominant magnetic carrier is hematite, with minor amount of magnetite. Both the composition and concentration of magnetic minerals strongly correlate with the lithostratigraphy, indicating that Yuanmou basin is characterized by alternating of long-term torrid-humid climate and short-term dry-hot climate. But the pattern of these short-term hot-dry events, including both the lasting time and the frequency of their occurrence dramatically changed since -8.1 Ma. Our results infer that the drying process of the Asian west interior and a significant uplift of the Tibetan Plateau would have probably caused jointly the extinction of hominoids, or the emigration of hominoids from Yuanmou to adjacent relatively torrid-humid areas.The strata between the upper of the Dapoqing section, the Niujianbao Hill and Shangnabang area can be linked by three mark layers of conglomerate, which is rather continuous and coherent than physical disturbance by new tectonic activities. Rock magnetic studies indicate that hematite is the main magnetic carriers. The section is dated back to about 2.8-1.37 Ma. Its paleocurrent flowed northeastward, which was a close and stagnant river and swamp environment about 2.2 Ma ago. Then it ran northwestward and turned into an open overflown and braid river sedimentary face during 2.2 to 1.57 Ma. Since 1.57 Ma, the paleocurrent flowed intensely northwestern and about 1.37 Ma ago, it ended the basically continuous fluvial-lacustrine deposition.
Resumo:
Landslides are widely distributed along the main stream banks of the Three Gorges Reservoir area. Especially with the acceleration of the human economic activities in the recent 30 years, the occurrence of landslide hazards in the local area trends to be more serious. Because of the special geological, topographic and climatic conditions of the Three Gorges areas, many Paleo-landslides are found along the gentle slope terrain of the population relocation sites. Under the natural condition, the Paleo-landslides usually keep stable. The Paleo-landslides might revive while they are influenced under the strong rainfall, water storage and migration engineering disturbance. Therefore, the prediction and prevention of landslide hazards have become the important problem involving with the safety of migration engineering of the Three Gorges Reservoir area.The past research on the landslides of the Three Gorges area is mainly concentrated on the stability analysis of individual landslide, and importance was little attached to the knowledge on the geological environment background of the formation of regional landslides. So, the relationship between distribution and evolution of landslides and globe dynamic processes was very scarce in the past research. With further study, it becomes difficult to explain the reasons for the magnitude and frequency of major geological hazards in terms of single endogenic or exogenic processes. It is possible to resolve the causes of major landslides in the Three Gorges area through the systematic research of regional tectonics and river evolution history.In present paper, based on the view of coupling of earth's endogenic and exogenic processes, the author researches the temporal and spacial distribution and formation evolution of major landslides(Volume^lOOX 104m3) in the Three Gorges Reservoir area through integration of first-hand sources statistics, .geological evolution history, isotope dating and numerical simulation method etc. And considering the main formation factors of landslides (topography, geology and rainfall condition), the author discusses the occurrence probability and prediction model of rainfall induced landslides.The distribution and magnitude of Paleo-landslides in the Three Gorges area is mainly controlled by lithology, geological structure, bank slope shape and geostress field etc. The major Paleo-landslides are concentrated on the periods 2.7-15.0 X 104aB.R, which conrresponds to the warm and wettest Paleoclimate stages. In the same time, the Three Gorges area experiences with the quickest crust uplift phase since 15.0X 104aB.P. It is indicated that the dynamic factor of polyphase major Paleo-landslides is the coupling processes of neotectonic movement and Quaternary climate changes. Based on the numerical simulation results of the formation evolution of Baota landslide, the quick crust uplift makes the deep river incision and the geostress relief causes the rock body of banks flexible. Under the strong rainfall condition, the pore-water pressure resulted from rain penetration and high flood level can have the shear strength of weak structural plane decrease to a great degree. Therefore, the bank slope is easy to slide at the slope bottom where shear stress concentrates. Finally, it forms the composite draught-traction type landslide of dip stratified rocks.The susceptibility idea for the rainfall induced landslide is put forward in this paper and the degree of susceptibility is graded in terms of the topography and geological conditions of landslides. Base on the integration with geological environment factors and rainfall condition, the author gives a new probabilistic prediction model for rainfall induced landslides. As an example from Chongqing City of the Three Gorges area, selecting the 5 factors of topography, lithology combination, slope shape, rock structure and hydrogeology and 21 kinds of status as prediction variables, the susceptibility zonation is carried out by information methods. The prediction criterion of landslides is established by two factors: the maximum 24 hour rainfall and the antecedent effective precipitation of 15 days. The new prediction model is possible to actualize the real-time regional landslide prediction and improve accuracy of landslide forecast.