132 resultados para Density functional theory calculations


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The elastic and electronic properties of hypothetical CoN3 and RhN3 with cubic skutterudite structure were studied by first principles calculations based on density functional theory. By choosing different initial geometries, two local minima or modifications were located on the potential energy surface, termed as modifications I and II. Both compounds are mechanically stable. For each compound, modification I is lower in energy than II. Thermodynamically stable phases can be achieved by applying pressures. Modification II is lower in energy than I at above 50 GPa for both compounds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The quantum yield, lifetime, and absorption spectrum of four [Ru(bpy)(2)L](+) [where bpy is 2,2'-bipyridyl; L is represented by the deprotonated form of 2-(1H-tetrazol-5-yl)pyridine (L1) or 2-(1H-tetrazol-5-yl)pyrazine (L2)], as well as their methylated complexes [Ru(bpy)(2)LMe](2+) (RuL1Me and RuL2Me) are closely ligand dependent. In this paper, density functional theory (DFT) and time-dependent DFT (TDDFT) were performed to compare the above properties among these complexes. The calculated results reveal that the replacement of pyridine by pyrazine or the attachment of a CH3 group to the tetrazolate ring greatly increases the pi-accepting ability of the ancillary ligands.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantum-chemistry methods were explored to investigate the electronic structures, injection and transport properties, absorption and phosphorescence mechanism of a series of blue-emitting Ir(III) complexes {[(F-2-ppy)(2)Ir(pta -X/pyN4)], where F-2-ppy = (2,4-difluoro)phenylpyridine; pta = pyridine-1,2,4-triazole; X = phenyl(1); p-tolyl (2); 2,6-difluororophenyl (3); -CF3 (4), and pyN4 = pyridine-1,2,4-tetrazolate (5)}, which are used as emitters in organic light-emitting diodes (OLEDs). The mobility of hole and electron were studied computationally based on the Marcus theory. Calculations of Ionization potentials (IPs) and electron affinities (EAs) were used to evaluate the injection abilities of holes and electrons into these complexes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Five new compounds of sulfonylcalix[4]arenetetrasulfonate (SC4AS), [H7Na(H2O)(3)(SC4AS)(phen)(5)](H2O)(11.9) (1), [H6Mn(H2O)(4)(SC4AS)(phen)(5)] (H2O)(12.7) (2), [Cu-4(SC4AS) (phen)(6)] (H2O)(4.5) (3), {[Cu (2)(SC4AS) (bpy)(2)][Cu(bpy)(2)(H2O)](2)} (H2O)(6.6) (4), and {[Zn-2(SC4AS) (phen)(2)][Zn(phen)(2)(H2O)(2)](2)} (H2O)(7) (5) (where phen 1,10-phenanthroline and bpy = 2,2'-bipyridine), were synthesized by a hydrothermal method and structurally determined by single crystal X-ray diffraction. The SC4AS ligand adopts partial cone conformation in compounds 1 and 2 and 1,2-alternate form in compounds 3-5. According to the structural analysis and density functional theory (DFT) calculations, we suggest that the metal can affect the conformation of SC4AS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structural, electronic, and mechanical properties of TaN were investigated by use of the density functional theory (DFT). Eight structures were considered, i.e.. hexagonal WC TaN, NiAs, wurtzite, and CoSn structures. cubic NaCl. zinc-blende and CsCl structures. The results indicate that TaN in TaN-type structure is the most stable at ambient conditions among the considered structures. Above 5 GPa, TaN in WC-type structure becomes energetically the most stable phase. They are also stable both thermodynamically and mechanically. TaN in WC-type has the largest shear Modulus 243 GPa and large bulk modulus 337 GPa among the considered structures. The Volume compressibility is slightly larger than diamond, but smaller than c-BN at pressures from 0 to 100 GPa. The compressibility along the c axis is smaller than the linear compressibility of both diamond and c-BN.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The half metallic properties of the recent synthesized Sr2CuOsO6 were predicted by using the density functional theory. The effects of electron correlation and spin-orbit coupling (SOC) were studied. The calculations show that without considering SOC effect, Sr2CuOsO6 is half metallic and ferrimagnetic. By including both electron correlation and spin-orbit coupling, the total spin magnetic moment is 0.89 mu(B), total orbital moment 0.43 mu(B) in opposite direction, making the net magnetic moment 0.46 mu(B). SOC ruins the half metallic character. Crown Copyright (C) 2009 Published by Elsevier B. V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bond distances, vibrational frequencies, dissociation energies, electron affinities, ionization potentials and dipole moments of the title molecules in neutral and charged ions were studied by use of density functional method. Ground states for each molecule were assigned. The calculated bond distance decreases with the increasing of atomic number of 4d metals, reaches minimum at RhS, then increases. For cationic molecules, the calculated bond distance decreases to the minimum at MoS+, then increases. The calculated vibrational frequency decreases from YS(YS+) to PdS(PdS+) for both neutral and cationic molecules. The bond ionic character decreases from YS(YS+) to PdS(PdS+) for neutral and cationic molecules. The bonding patterns are discussed and compared with the available studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By fusing an electron-deficient ring system with the phenyl ring of a 2-phenylpyridine (ppy)-type ligand, a new and synthetically versatile strategy for the phosphorescence color tuning of cyclometalated iridium(III) and platinum(II) metallophosphors has been established. Two robust red electrophosphors with enhanced electron-injection/electron-transporting features were prepared by using an electron-trapping fluoren-9-one chromophore in the ligand design. The thermal, photophysical, redox and electrophosphorescent properties of these complexes are reported. These exciting results can be attributed to a switch of the metal-to-ligand charge-transfer (MLCT) character of the transition from the pyridyl groups in the traditional Ir-III or Pt-II ppy-type complexes to the electron-deficient ring core, and the spectral assignments corroborate well with the electrochemical data as well as the timedependent density functional theory (TD-DFT) calculations. The electron-withdrawing character of the fused ring results in much more stable MLCT states, inducing a substantial red-shift of the triplet emission energy from yellow to red for the Ir-III complex and even green to red for the PtII counterpart.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report a heteroleptic ruthenium complex (007) featuring the electron-rich 5-octyl-2,2'-bis(3,4-ethylenedioxythiophene) moiety conjugated with 2,2-bipyridine and exhibiting 10.7% power conversion efficiency measured at the AM1.5G conditions, thanks to the enhanced light-harvesting that is closely related to photocurrent. This C107 sensitizer has an extremely high molar extinction coefficient,of 27.4 x 10(3) M-1 cm(-1) at 559 nm in comparison to its analogue C103 (20.5 x 10(3) M-1 cm(-1) at 550 nm) or Z907 (12.2 x 10(3) M(-1)cm(-1) at 521 nm) with the corresponding 5-hexyl-3,4-ethylenedioxythiopliene- or nonyl-substituted bipyridyl unit. The augmentation of molar extinction coefficients and the bathochromic shift of low-energy absorption peaks along with the pi-conjugation extension are detailed by TD-DFT calculations. The absorptivity of mesoporous titania films grafted with Z907, C103, or C107 sublinearly increases with the molar extinction coefficient of sensitizers, which is consistent with the finding derived from the surface coverage measurements that the packing density of those sensitizers decreases with the geometric enlargement of ancillary ligands.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electronic and magnetic properties of CaCu3Cr4O12 and CaCu3Cr2Sb2O12 are investigated by the use of the full-potential linearized augumented plane wave (FPLAPW) method. The calculated results indicate that CaCu3- Cr4O12 is a ferrimagnetic and half-metallic compound, in good agreement with previous theoretical studies. CaCu3- Cr2Sb2O12 is a ferrimagnetic semiconductor with a small gap of 0.136 eV. In both compounds, because Cr4+ 3d (d(2)) and Cr3+ 3d (d(3)) orbitals are less than half filled, the coupling between Cr-Cu is antiferromagnetic, whereas that between Cu-Cu and Cr-Cr is ferromagnetic. The total net spin moment is 5.0 and 3.0 mu(B) for CaCu3Cr4O12 and CaCu3Cr2Sb2O12, respectively. In CaCu3Cr4O12, the 3d electrons of Cr4+ are delocalized, which strengthens the Cr-Cr ferromagnetic coupling. For CaCu3Cr2Sb2O12, the doping of nonmagnetic ion Sb5+ reduces the Cr-Cr ferromagnetic coupling, and the half-filled Cr3+ t(2g) (t(2g)(3)) makes the chromium 3d electrons localized. In addition, the ordering arrangement of the octahedral chromium and antimony ions also prevents the delocalization of electrons. Hence, CaCu3Cr2Sb2O12 shows insulating behavior, in agreement with the experimental observation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bond distances, vibrational frequencies, electron affinities, ionization potentials, dissociation energies and dipole moments of the title molecules in neutral, positively and negatively charged ions were studied by use of density functional method. Ground electronic state was assigned for each molecule. The bonding patterns were analyzed and compared with both the available data and across the series. It was found that besides ionic component, covalent bonds are formed between the metal s, d and f orbitals and oxygen p orbitals. Contrary to the well known lanthanide contraction, the bond distance is not regular from LaO to LuO for both neutral and charged molecules. An obvious population at 5d orbital was observed through the lanthanide series. 4f electrons also participate the chemical bonding for CeO to NdO and TbO to TmO. For EuO, GdO, YbO and LuO, 4f electrons tend to be localized. The spin multiplicity is regular for neutral and charged molecules. The spin multiplicity of the charged molecules can be obtained by -1 (or +1 for TbO+, DyO+, YbO- and YbO+) compared with the corresponding neutral molecules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Zinc(II)-2-(2-hydroxyphenyl)benzothiazolate complex is an excellent white-light-emitting material. Despite some studies devoted to this complex, no information on the real origin of the unusually broad electroluminescent (EL) emission is available. Therefore, we investigate photoluminescent and EL properties of the zinc complex. Orange phosphorescent emission at 580 nm was observed for the complex in thin film at 77 K, whereas only fluorescent emission was obtained at room temperature. Molecular orbitals, excitation energy, and emission energy of the complex were investigated using quantum chemical calculations. We fabricated the device with a structure of ITO/F16CuPc(5.5 nm)/Zn-complex/Al, where F16CuPc is hexadecafluoro copper phthalocyanine. The EL spectra varied strongly with the thickness of the emissive layer. We observed a significant change in the emission spectra with the viewing angles. Optical interference effects and light emission originating both from fluorescence and from phosphorescence can explain all of the observed phenomena, resulting in the broad light emission for the devices based on the Zn complex. We calculated the charge transfer integral and the reorganization energy to explain why the Zn complex is a better electron transporter than a hole transporter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Four novel Ir-III and Pt-II complexes with cyclometalated ligands bearing a carbazole framework are prepared and characterized by elemental analysis, NMR spectroscopy, and mass spectrometry. Single-crystal X-ray diffraction studies of complexes 1, 3, and 4 reveal that the 3- or 2-position C atom of the carbazole unit coordinates to the metal center. The difference in the ligation position results in significant shifts in the emission spectra with the changes in wavelength being 84 nm for the Ir complexes and 63 nm for the Pt complexes. The electrochemical behavior and photophysical properties of the complexes are investigated, and correlate well with the results of density functional theory (DFT) calculations. Electroluminescent devices with a configuration of ITO/NPB/CBP:dopant/BCP/AlQ(3)/LiF/Al can attain very high efficiencies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

First-principles calculations using the augmented plane wave plus local orbital method, as implemented in the WIEN2K code, have been used to investigate the structural, electronic, and magnetic properties of the layered perovskite Cs2AgF4. Our calculations indicate that an orthorhombic ground state for Cs2AgF4 is energetically favored over tetragonal. We also find that Cs2AgF4 should be a strong two-dimensional ferromagnet, with very weak antiferromagnetic coupling between the layers, in agreement with the experiment. More importantly, an antiferrodistortive ordering of z(2)-x(2) and z(2)-y(2) orbitals is inferred from the density of states and from a spin density isosurface analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Equilibrium geometries, vibrational frequencies and dissociation energies of the second row transition metal dimers (from Y-2 to Cd-2 except Tc-2) ere studied by use of density functional methods B3LYP, BLYP, B3PW91, BHLYP, BP86, B3P86, SVWN, MPW1PW91 and PBE1PBE. The accuracy DFT methods is found to be highly dependent on the functional employed, in particular for vibrational frequency and dissociation energy. In most cases, the predicted bond distance is in general agreement with experiment and previous theoretical results. For van der Waals dimer Cd-2, B3LYP and BLYP have excellent performance in predicting the bond distance. For Ag-2, all density functional methods used in this study perform well in producing the bond distance, vibrational frequency and dissociation energy.