164 resultados para Cuo : HZSM-5
Resumo:
The aromatization of methane over a Mo/HZSM-5 catalyst was carried out in the presence of oxygen. It is shown that the addition of a small amount of oxygen is beneficial to improve the durability of the catalyst. UV-Raman spectra disclose that the carbonaceous deposits formed on the HZSM-5 are mainly polyolefinic and aromatic, while that on the Mo/HZSM-5 is mainly polyaromatic. The small amount of O-2 added may partly remove the coke deposits on the active sites and keep the catalyst as MoOxCy/HZSM-5, thus resulting in an improvement of the catalytic performance of the Mo/HZSM-5 catalyst.
Resumo:
The thermal and hydrothermal stabilities of HZSM-5 zeolites with crystal sizes less than 100 nm have been studied by multinuclear solid-state NMR, combined with BET and XRD. As evidenced by Al-27 and Si-29 MAS as well as their corresponding cross-polarization/MAS NMR investigations, the thermal stability of nanosized HZSM-5 is not so good as that of microsized HZSM-5. This is due to two processes concerning dealumination and desilicification involved in the calcination of nanosized HZSM-5, while only the dealumination process is conducted in microsized HZSM-5 under the similar calcination process. The hydrothermal stability of nanosized HZSM-5 is, contrary to what was expected, not so bad as that of the microsized HZSM-5 in the course of steam treatment. The actual resistance of the hydrothermal stability to the crystal size of HZSM-5 can be ascribed to an active reconstruction of zeolitic framework through an effective filling of amorphous Si species into nanosized HZSM-5 during hydrothermal treatment. (C) 2001 Published by Elsevier Science B.V.
Resumo:
Carbonaceous deposits formed during the temperature-programmed surface reaction (TPSR) of methane dehydro-aromatization (MDA) over Mo/HZSM-5 catalysts have been investigated by TPH, TPCO2 and TPO, in combination with thermal gravimetric analysis (TG). The TPO profiles of the coked catalyst after TPSR of MDA show two temperature peaks: one is at about 776 K and the other at about 865 K. The succeeding TPH experiments only resulted in the diminishing of the area of the high-temperature peak, and had no effect on the area of the low-temperature peak. On the other hand, the TPO profiles of the coked catalyst after succeeding TPCO2 experiments exhibited obvious reduction in the areas of both the high-and low-temperature peaks, particularly in the area of the low-temperature peak. On the basis of TPSR, TPR and TPCO2 experiments and the corresponding TG analysis, quantitative analysis of the coke and the kinetics of its burning-off process have been studied. (C) 2001 Elsevier Science B.V. All rights reserved.