128 resultados para Covalent binding
Resumo:
The rare earth monophthalocyanine complexes, LnPcCl and LnPc(OAc)2 (Ln = Tb, Ho, Tm, Lu, Pc=Phthalocyanine, OAc = Acetate), were synthesized. The electronic structures of the complexes have been studied by means of XPS. The experimental results of binding energies for the complexes indicate that the bonds of the complexes have a certain covalent character depending on L-->Ln charge transfer. This L-->Ln charge transfer process of phythalocyanine complexes differs from that of crown ether complexes. Both coordination and substitution are included in the former case, but only coordination in the latter. Phthalocyanine ring is an electrophilic group and its electronegativity is large. So, the O1s binding energies of coordinating oxygen atoms of acetate in LnPc(OAc)2 are larger than those of Ln(OAc)3. The magnitude of valent charge delocalized from ligand onto metal atom is dependent on electronegativity, coordination number, valence state and so on. Because coordination number of Ln in LnPc(OAc)2 is larger than that in LnPcCl and electronegativity of Clin LnPcCl is larger than that of O in LnPc(OAc)2, the Ln4d5/2 binding energies of LnPc (OAc)2 are less than those of LnPcCl.
Resumo:
In most cases the luminescence of Eu~(2+) consists of a d-f broad-band emission, in some particular hosts, however, Eu~(2+) can also give out f-f narrow-line emission. There are two factors of importance here: the first is the strength of the crystal-field
Resumo:
Zhikong scallop Chlamys farreri(Jones et Preston) is an economically important species in China. Understanding its immune system would be of great help in controlling diseases. In the present study, an important immunity-related gene, the Lipopolysaccharide and Beta-1,3-glucan Binding Protein (LGBP) gene, was located on C. farreri chromosomes by mapping several lgbp-containing BAC clones through fluorescence in situ hybridization (FISH). Through the localization of various BAC clones, it was shown that only one locus of this gene existed in the genome of C. farreri, and that this was located on the long arm of a pair of homologous chromosomes. Molecular markers, consisting of eight single nucleotide polymorphism (SNPs) markers and one insertion-deletion (indel), were developed from the LGBP gene. Indel marker testing in an F1 family revealed slightly distorted segregation (p = 0.0472). These markers can be used to map the LGBP gene to the linkage map and assign the linkage group to the corresponding chromosome. Segregation distortion of the indel marker indicated genes with deleterious alleles might exist in the surrounding region of the LGBP gene.
Resumo:
Insulin-like growth factor-binding protein (IGFBP)-3 is the major insulin-like growth factor (IGF) carrier protein in the bloodstream. IGFBP-3 prolongs the half-life of circulating IGFs and prevents their potential hypo-glycemic effect. IGFBP-3 is also expressed in many peripheral tissues in fetal and adult stages. In vitro, IGFBP-3 can inhibit or potentiate IGF actions and even possesses IGF-independent activities, suggesting that local IGFBP-3 may also have paracrine/autocrine function(s). The in vivo function of IGFBP-3, however, is unclear. In this study, we elucidate the developmental role of IGFBP-3 using the zebrafish model. IGFBP-3 mRNA expression is first detected in the migrating cranial neural crest cells and subsequently in pharyngeal arches in zebrafish embryos. IGFBP-3 mRNA is also persistently expressed in the developing inner ears. To determine the role of IGFBP-3 in these tissues, we ablated the IGFBP-3 gene product using morpholino-modified antisense oligonucleotides (MOs). The IGFBP-3 knocked down embryos had delayed pharyngeal skeleton morphogenesis and greatly reduced pharyngeal cartilage differentiation. Knockdown of IGFBP-3 also significantly decreased inner ear size and disrupted hair cell differentiation and semicircular canal formation. Furthermore, reintroduction of a MO-resistant form of IGFBP-3 "rescued" the MO-induced defects. These findings suggest that IGFBP-3 plays an important role in regulating pharyngeal cartilage and inner car development and growth in zebrafish.
Resumo:
A pattern recognition protein (PRP), lipopolysaccharide and beta-1,3-glucan binding protein (LGBP) cDNA was cloned from the haemocyte of Chinese shrimp Fenneropenaeus chinensis by the techniques of homology cloning and RACE. Analysis of nucleotide sequence revealed that the full-length cDNA of 1,275 bp has an open reading frame of 1,098 bp encoding a protein of 366 amino acids including a 17 amino acid signal peptide. Sequence comparison of the deduced amino acid sequence of F. chinensis LGBP showed a high identity of 94%, 90%, 87%, 72% and 63% with Penaeus monodon BGBP, Litopenaeus stylirostris LGBP, Marsupenaeu japonicus BGBP, Homarus gammarus BGBP and Pacifastacus leniusculus LGBP, respectively. The calculated molecular mass of the mature protein is 39,857 Da with a deduced pI of 4.39. Two putative integrin binding motifs, RGD (Arg-Gly-Asp) and a potential recognition motif for beta-1,3-linkage of polysaccharides were observed in LGBP sequence. RT-PCR analysis showed that LGBP gene expresses in haemocyte and hepatopancreas only, but not in other tissues. Capillary electrophoresis RT-PCR method was used to quantify the variation of mRNA transcription level during artificial infection with heat-killed Vibrio anguillarum and Staphylococcus aureusin. A significant enhancement of LGBP transcription was appeared at 6 h post-injection in response to bacterial infection. These results have provided useful information to understand the function of LGBP in shrimp.
Resumo:
Lipopolysaccharide and beta-1,3-glucan-binding protein (LGBP) play a crucial role in the innate immune response of invertebrates as a pattern recognition protein (PRP). The scallop LGBP gene was obtained from Chlamys farreri challenged by Vibrio anguillarum by randomly sequencing cDNA clones from a whole body cDNA library, and by fully sequencing a clone with homology to known LGBP genes. The scallop LGBP consisted of 1876 nucleotides with a canonical polyadenylation signal sequence AATAAA and a poly(A) tail, encoding a polypeptide of 440 amino acids with the estimated molecular mass of 47.16 kDa and a predicted isoelectric point of 5.095. The deduced amino acid sequence showed a high similarity to that of invertebrate recognition proteins from blue shrimp, black tiger shrimp, mosquito, freshwater crayfish, earthworms, and sea urchins, with conserved features including a potential polysaccharide-binding motif, a glucanase motif, and N-glycosylation sites. The temporal expression of LGBP genes in healthy and V. anguillarum-challenged C farreri scallop, measured by real-time semiquantitative reverse transcription polymerase chain reaction (PCR), showed that expression was up-regulated initially, followed by recovery as the stimulation cleared. Results indicated that scallop LGBP was a constitutive and inducible acute-phase protein that could play a critical role in scallop-pathogen interaction. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
B-phycoerythrin (BPE) and R-phycocyanin (RPC) were purified from Porphyridium cruentum by Sephadex G-200 chromatography, then the BPE was attached covalently to the RPC by reacting their amino groups to form the artificially covalent BPE-RPC conjugate in which the excitation energy can transfer from the BPE to the RPC with low efficiency. Meanwhile, the intact phycobilisome (PBS) consisting of BPE, RPC, APC and L-CM was isolated and purified from Porphyridium cruentum, and the purified PBS was found to keep intact if the solution contains sucrose. Comparison of spectroscopic properties between the purified PBS and the BPE-RPC conjugate suggests that the BPE-RPC conjugate is much more stable than the purified PBS. The construction of BPE-RPC conjugate with low efficiency of the excitation energy transfer may be useful for preparing phycobiliprotein probes. (C) 2002 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
The C1q-domain-containing (C1qDC) proteins are a family of proteins characterized by a globular C1q (gC1q) domain in their C-terminus. They are involved in various processes of vertebrates and supposed to be an important pattern recognition receptor in innate immunity of invertebrates. In this study, a novel member of C1q-domain-containing protein family was identified from Zhikong scallop Chlamys farreri (designated as CfC1qDC) by expressed sequence tag (EST) and rapid amplification of cDNA ends (RACE) approaches. The full-length cDNA of CfC1qDC was of 777 bp, consisting of a T-terminal untranslated region (UTR) of 62 bp and a 3' UTR of 178 bp with a polyadenylation signal sequence AATAAA and a poly (A) tail. The CfC1qDC cDNA encoded a polypeptide of 178 amino acids, including a signal peptide and a C1q-domain of 158 amino acids with the theoretical isoelectric point of 5.19 and the predicted molecular weight of 17.2 kDa. The C1q-domain in CfC1qDC exhibited homology with those in sialic acid binding lectin from mollusks and C1qDC proteins from higher vertebrates. The typical 10 beta-strand jelly-roll folding topology structure of C1q-domain and the residues essential for effective packing of the hydrophobic core were well conserved in CfC1qDC. By fluorescent quantitative real-time PCR, mRNA transcripts of CfC1qDC were mainly detected in kidney, mantle, adductor muscle and gill, and also marginally detectable in hemocytes. In the bacterial challenge experiment, after the scallops were challenged by Listonella anguillarum, there was a significant up-regulation in the relative expression level of CfC1qDC and at 6 h post-injection, the mRNA expression reached the maximum level and was 4.55-fold higher than that of control scallops. Similarly, the expression of CfC1qDC mRNA in mixed primary cultures of hemocytes stimulated by lipopolysaccharides (LPS) was up-regulated and reached the maximum level at 6 h post-stimulation, and then dropped back to the original level gradually. In order to investigate its function, the cDNA fragment encoding the mature peptide of CfC1qDC was recombined and expressed in Escherichia coli BL21 (DE3). The recombinant CfC1qDC protein displayed a significantly strong activity to bind LIDS from E. coli, although no obvious antibacterial or agglutinating activity toward Gram-negative bacteria E. coli JM109, L. anguillarum and Gram-positive bacteria Micrococcus luteus was observed. These results suggested that CfC1qDC was absolutely a novel member of the C1qDC protein family and was involved in the recognition of invading microorganisms probably as a pattern recognition molecule in mollusk. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Selenium binding proteins (SeBP) represent a family of proteins that are believed to be involved in controlling the oxidation/reduction in many physiological processes. The cDNA of Zhikong Scallop Chlamys farreri selenium binding protein (zSeBP) was cloned by expressed sequence tag (EST) and RACE techniques. The high similarity of zSeBP deduced amino acid sequence with the SeBP in other organisms, such as bird, fish, frog, mosquito, fruit fly, mammalian, and even nematode and microorganism indicated that zSeBP should be a member of SeBP family. The temporal expression of zSeBP in the hemocytes was measured by semi-quantitative RT-PCR after scallops were stimulated by either oxidative stress or microbial challenge. The expression of zSeBP was up-regulated progressively after stimulation, and then dropped gradually to the original level. Meanwhile, malondialdehyde (MDA) measured by the colorimetric method in the microbial challenged scallops increased immediately after scallops was challenged by microbes, and was significantly higher than that in the control scallops. Results indicated that the microbial infection could incense the disorder of oxidation/reduction and may result in high MDA production. The negative correlation between the expression level of zSeBP and the MDA content suggested that zSeBP could play an important role in mediating the anti-oxidation mechanisms and immune response in marine invertebrates. (c) 2005 Published by Elsevier Ltd.
Resumo:
To evaluate the interactions between the atoms of An, Ag and Cu and clean Si(111) surface, two types of silicon clusters Si4H7 and Si16H20 together with their metal complexes were studied by using hybrid (U)B3LYP density functional theory method. Optimized geometries and energies on different adsorption sites indicate that: (1) the binding energies at different adsorption sites are large (ranging from similar to 1.2 to 2.6 eV depend on the metal atoms and adsorption sites), suggesting a strong interaction between metal atom and silicon surface; (2) the most favorable adsorption site is the on top (T) site. Mulliken population analysis indicated that in the system of on top (T) site, a covalent bond is formed between metal atom and dangling bond of surface Si atom. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Phenolic marine natural product is a kind of new potential aldose reductase inhibitors (ARIs). In order to investigate the binding mode and inhibition mechanism, molecular docking and dynamics studies were performed to explore the interactions of six phenolic inhibitors with human aldose reductase (hALR2). Considering physiological environment, all the neutral and other two ionized states of each phenolic inhibitor were adopted in the simulation. The calculations indicate that all the inhibitors are able to form stable hydrogen bonds with the hALR2 active pocket which is mainly constructed by residues TYR48, HIS110 and TRP111, and they impose the inhibition effect by occupying the active space. In all inhibitors, only La and its two ionized derivatives La_ion1 and La_ion2, in which neither of the ortho-hydrogens of 3-hydroxyl is substituted by Br, bind with hALR2 active residues using the terminal 3-hydroxyl. While, all the other inhibitors, at least one of whose ortho-sites of 3- and 6-hydroxyls are substituted by Br substituent which take much electron-withdrawing effect and steric hindrance, bind with hALR2 through the lactone group. This means that the Br substituent can effectively regulate the binding modes of phenolic inhibitors. Although the lactone bound inhibitors have relatively high RMSD values, our dynamics study shows that both binding modes are of high stability. For each inhibitor molecule, the ionization does not change its original binding mode, but it does gradually increase the binding free energy, which reveals that besides hydrogen bonds, the electrostatic effect is also important to the inhibitor–hALR2 interaction.
Resumo:
A capillary electrophoresis (CE) technique for determining total iron binding capacity (TIBC) of serum has been developed. The optimum serum pretreatment involves the following major steps: at first, saturate serum transferrin with Fe+3; then, dissociate them completely after removing excess unbound Fe. Finally, complex the released iron with phenanthroline, a chromophore, to make suitable for the CE analysis. Ammonium acetate (pH = 5.0) was used as CE background electrolyte solution. In this system, a good linear correlation coefficient was maintained over the range 0.5 similar to 10 mu M (r = 0.9979, n =12). Seven adult serum samples were studied and the TIBC parameters measured. In the present system, 10 similar to 30 mu L serum is sufficient for determination. The study shows that the CE technique described is a powerful method for rapid, efficient, sensitive and reliable analysis and hence particularly suitable for clinical application.