209 resultados para Colloidal self-assembly


Relevância:

90.00% 90.00%

Publicador:

Resumo:

A promising method for assembling carbon nanotubes (CNTs) and poly(diallyldimethylammonium chloride) protected Prussian blue nanoparticles (P-PB) to form three-dimensional (3D) nanostructured films is proposed. The electrostatic interaction, combined with layer-by-layer self-assembly (LBL), between negatively charged CNTs and positively charged P-PB is strong enough to drive the formation of the 3D nanostructured films. Thus, prepared multilayer films were characterized by ultraviolet-visible-near-infrared spectroscopy (UV-vis-NIR), scanning electron microscopy (SEM) and cyclic voltammetry (CV).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Three-dimensional flowerlike Lu2O3 and Lu2O3:Ln(3+) (Ln = Eu, Th, Dy, Pr, Sm, Er, Ho, Tm) microarchitectures have been successfully synthesized via ethylene glycol (EG)-mediated hydrothermal method followed by a subsequent heat treatment process. X-ray diffraction, Fourier transform infrared spectroscopy, energy-dispersive X-ray spectra, thermogravimetric and differential thermal analysis, elemental analysis, inductively coupled plasma atomic absorption spectrometric analysis, ion chromatogram analysis, X-ray photoelectron spectra, scanning electron microscopy, transmission electron microscopy, photoluminescence spectra as well kinetic decays, and cathodoluminescence spectra were used to characterize the samples. Hydrothermal temperature, EG, and CH3COONa play critical roles in the formation of the lutetium oxide precursor microflowers. The reaction mechanism and the self-assembly evolution process have been proposed. The as-formed lutetium oxide precursor could transform to Lu2O3 With their original flowerlike morphology and slight shrinkage in the size after postannealing process.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A universal metal-molecule-metal sandwich architecture by the self-assembly of Ag nanoparticles (NPs) and Au NPs of various shapes interconnected with 4-aminothiophenol (4-ATP) molecules was presented. These Ag NPs/4-ATP/Au NPs sandwich structures were characterized by surface enhanced Raman scattering (SERS) using an off-surface plasmon resonance condition. Enhancement factors (EF) on the order of 10(8) for 9b(b(2)) vibration mode were observed for the 4-ATP self-assembled monolayers (SAMs) in such sandwich structures. The factors are 2 orders of magnitude larger than that on the monolayer of Au NPs of various shapes under similar condition. More importantly, remarkable increase in the intensity of b(2) vibrational modes, which is characteristic of the charge transfer (CT) behavior between metal NPs and 4-ATP molecules, was observed in these sandwich structures under 1064 nm excitation. The obtained EF on these sandwich structure for 9b(b(2)) is larger than that for 7a vibration mode by a factor of similar to 10(2), demonstrating the importance of the contribution of the CT mechanism and the CT behavior of metal contacts, which play a significant role in metal-molecule-metal nanosystems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We reported a simple method to synthesize gold nanoparticles (NPs) by photoreducing HAuCl4 in acetic acid solution in the presence of type I collagen. It was found that the collagen takes an important role in the formation of gold NPs. The introduction of collagen made the shape of the synthesized gold nanocrystals change from triangular and hexangular gold nanoplates to size-uniform NPs. On the other hand, thanks to the special characters of collagen molecules, such as its linear nanostructure, are positively charged when the pH < 7, and the excellent self-assembly ability, photoreduced gold NPs were assembled onto the collagen chains and formed gold NPs films and networks. A typical probe molecule, 4-aminothiophenol, was used to test the surface-enhanced Raman scattering activity of these gold NPs films and networks and the results indicated good Raman activity on these substrates.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Novel nanocomposite films containing DNA-silver nanohybrids have been successfully fabricated by combined use of the layer-by-layer self-assembly technique and an in situ electrochemical reduction method with the DNA-Ag+ complex as one of the building blocks. UV-vis absorption spectroscopy was employed to monitor the buildup of the multilayer films, which suggested a progressive deposition with almost an equal amount of the DNA-Ag+ complex in each cycle. The following electrochemical reduction of silver resulted in the formation of metal nanoparticles in the film, which was evidenced by the evolution of the intense plasmon absorption band originating from silver. Scanning electron microscopy indicated that the particles formed in the multilayer films possessed good monodispersity and stability, thanks to the surrounding polymers. X-ray photoelectron spectroscopy further confirmed the presence of the main components (such as DNA and metallic silver) of the nanocomposite films. In addition, we show that the size of the metal nanoparticles and the optical property of the film could be readily tuned by manipulating the assembly conditions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We report the self-assembly of polyelectrolyte homopolymers such as poly(acrylic acid) with imogolite to generate stable tubular structures, which were several micrometers in diameter and millimeters in length with no hierarchical ordered structure. No special polymer architecture or interaction was required for the assembly.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Based on the electrostatic attraction Keggin-type polyoxometalate H4SiW12O40 (SiW12) and small molecule 4-aminobenzo-15-crown-5 ether (4-AB15C5) were alternately deposited on poly (allylamine hydrochloride) (PAH)-derived indium tin oxide (ITO) substrate through a layer-by-layer (LBL) self-assembly, forming a supramolecular multilayer film (film-A). SiW12 was also deposited on a glassy carbon electrode (GCE) derived by 4-AB15C5 via covalent bonding in 0.1 M NaCl aqueous solution and formed a composite monolayer film (film-B). UV-vis absorption spectroscopy, X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared (FTIR) spectroscopy measurements demonstrated that the interactions between SiW12 and 4-AB15C5 in both two film electrodes were the same and caused by the bridging action of oxonium ions. But, the nanostructure in the two film electrodes was different. 4-AB15C5 in film-A was oriented horizontally to ITO substrate, however, that in film-B was oriented vertically to GCE. Namely film-A corresponded to a layer structure, and film-B corresponded to an intercalation structure.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Gold nanoparticles were deposited onto 2-mercaptoethylamine (MEA)-assembled planar gold thin film to construct gold nanoparticles modified electrode by virtue of a solution-based self-assembly strategy. Subsequently, 3-mercaptopropionic acid (MPA)-bridged copper hexacyanoferrate (CuHCF) multilayers were constructed on the as-prepared gold nanoparticles modified electrode. The resulted multilayer nanostructures were investigated by electrochemical surface plasmon resonance (EC-SPR) and atomic force microscopy (AFM) with primary emphasis upon the effect of the gold nanoparticles on the MPA/CuHCF multilayers growth and their surface morphology. Compared with the multilayer system on a planar gold electrode, the different electrochemical and optical properties might result from higher curvature effect and extraordinary surface-to-volume ratio characteristic of gold nanoparticles and the nanoparticle-selective growth of CuHCF. A dendrimer-like assembly process was proposed to explain the experiment results. This new motif of multilayer on the gold nanoparticles modified electrode was different from that of on a planar gold electrode, indicating a potential application of EC-SPR technique in the study of nanocomposite materials.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Three-dimensional Au nanorod and An nanoparticle nanostructured materials were prepared by layer-by-layer self-assembly. The plasmonic properties of the An nanorod and An nanoparticle self-assembled nanostructured materials (abbreviated as AuNR and AuNP SANMs) are tunable by the controlled self-assenibly process. The effect of thermal annealing at 180 and 500 degrees C to the morphologies, plasmonic properties and surface-enhanced Raman scattering (SERS) responses of these SANMs were investigated. According to the experimental results, these properties correlate with the structure of the SANMs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Two- and three-dimensional Au nanoparticle/[tetrakis(N-methylpyridyl)porphyrinato]cobalt (CoTMPyP) nanostructured materials were prepared by "bottom-up" self-assembly. The electrocatalytic and plasmonic properties of the Au nanoparticle/CoTMPyP self-assembled nanostructured materials (abbreviated as Au/CoTMPyP SANMs) are tunable by controlled self-assembly of the An nanoparticles and CoTMPyP on indium tin oxide (ITO) electrode. The electrocatalytic activity of the Au/CoTMPyP SANMs can be tuned in two ways. One way is that citrate-stabilized An nanoparticles are positioned first on ITO surface with tunable number density, and then positively charged CoTMPyP ions are planted selectively on these gold sites. The other way is that An nanoparticles and CoTMPyP are deposited by virtue of layer-by-layer assembly, which can also tune the amount of the as-deposited electrocatalysts. FE-SEM studies showed that three-dimensional SANMs grow in the lateral expansion mode, and thermal annealing resulted in both surface diffusion of nanoparticles and atomic rearrangement to generate larger gold nanostructures with predominant (I 11) facets.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The first example of one-dimensional organic-inorganic polymetallic coordination polymer based on heptamolybdate anions, formulated (NH4)[Cu(en)(2)][Na(en)Cu(en)(2)(H2O)(Mo7O24)].4H(2)O (en = ethylenediamine) (1) has been hydrothermally synthesized and characterized by element analysis, IR, EPR, CV and single crystal X-ray diffraction. The structure of 1 is fabricated by self-assembly of integrated heptamolybdic anions without collapse of primary structure and copper-ethylenediamine(en) coordination groups into one-dimensional zigzag-shaped chains.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We used colloidal An to enhance the amount of antibody immobilized on a gold electrode and ultimately monitored the interaction of antigen-antibody by impedance measurement. Self-assembly of 6 nm (diameter) colloidal An onto the self-assembled monolayers (SAMs) of 4-aminothiophenol modified gold electrode resulted in an easier attachment of antibody. The redox reactions of [Fe(CN)(6)](4-)/[Fe(CN)(6)](3-) on the gold surface were blocked due to the procedures of self-assembly of 4-aminothiophenol and antibody immobilization, which were investigated by cyclic voltammetry and impedance spectroscopy. The interaction of antigen with grafted antibody recognition layers was carried out by soaking the modified electrode into a phosphate buffer at pH 7.4 with various concentrations of antigen at 37 degreesC for 30 min. The antibody recognition layers and their interactions with various concentrations of antigen could be detected by measurements of the impedance change. The results show that this method has good correlation for detection of Hepatitis B virus surface antigen in the range of 0.5-200 mug/l and a detection limit of about 50 ng/l.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

One-dimensional gold/polyaniline (Au/PANI-CSA) coaxial nanocables with an average diameter of 5060 nm and lengths of more than 1 mu m were successfully synthesized by reacting aniline monomer with chlorauric acid (HAuCl4) through a self-assembly process in the presence Of D-camphor-10-sulfonic acid (CSA), which acts as both a dopant and surfactant. It was found that the formation probability and the size of the Au/PANI-CSA nanocables depends on the molar ratio of aniline to HAuCl4 and the concentration of CSA, respectively. A synergistic growth mechanism was proposed to interpret the formation of the Au/PANI-CSA nanocables. The directly measured conductivity of a single gold/polyaniline nanocable was found to be high (approximate to 77.2S cm(-1)). Hollow PANI-CSA nanotubes, with an average diameter of 50-60 nm, were also obtained successfully by dissolving the Au nanowire core of the Au/PANI-CSA nanocables.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Evaporation of a droplet of silica microsphere suspension on a polystyrene and poly(methyl methacrylate) blend film with isolated holes in its surface has been exploited as a means of particles self-assembly. During the retraction of the contact line of the droplet, spontaneous dewetting combined with the strong capillary force pack the silica microspheres into the holes in the polymer surface. Complex aggregates of colloids are formed after being exposed to acetone vapor. The morphology evolution of the underlying polymer film by exposure to acetone solvent vapor is responsible for the complex aggregates of colloids formation.