114 resultados para Chloride ion diffusion coefficient
Resumo:
The ion-molecule reactions of disubstituted benzenes under chemical ionization conditions with acetyl chloride as reagent gas were examined, and the fragmentation reactions of the adduct ions (mostly proton and acetyl ion adducts) were studied by collision-induced dissociation. Electron-releasing substituents favored the adduct reactions, and electron-withdrawing groups did not. The position and properties of substituting groups had an effect on the relative abundances of the adduct ions. Several examples of the ortho effect were observed. The fragmentation reaction of the adduct ions formed by ortho-benzenediamine with the acetyl ion was similar to the reductive alkylation reaction of amines in the condensed phase. Copyright (C) 2001 John Wiley & Sons, Ltd.
Resumo:
Cyclic voltammetry was employed to study the influence of sterols on the lipophilic ion transport through the BLM. The mole fraction of the sterols (cholesterol, oxidized cholesterol). as referred to total lipid, was varied in a range of 0-0.8. Data demonstrate that a thin-layer model is suitable to this BLM system. By this model, the number of charges transported per lipophilic ion, the concentration of the ion in the membrane bulk phase and the aqueous/membrane phase partition coefficient could be calculated. These parameters proved that sterols had an obvious influence on the lipophilic ion transport. Cholesterol had a stronger influence on the ion transport than oxidized cholesterol. Its incorporation into egg lecithin membranes increased the partition coefficient beta of the ion up to more than 3-fold. Yet, oxidized cholesterol incorporated into egg lecithin membranes only increased the beta up to less than 2-fold, and the beta had no great variation at different oxidized cholesterol mole fractions. The higher beta obtained was partly due to the trace amount of solvent existing in the core of the lipid bilayers. At the different sterol mole fractions, combining the change of beta with the change of peak current, we also concluded that sterols had somewhat inhibiting effect on the ion transport at the higher sterols mole fraction (>0.4). These results are explained in terms of the possible change of dipole potential of the membrane produced by sterols and the decrease of the membrane fluidity caused by the condensation effect of sterols and the thinning effect caused by sterols. The substituting group (in the oxidized cholesterol) had some inhibiting effects on the ion transport at higher mole fractions (oxidized cholesterol mole fraction >0.4).
Resumo:
Monensin was incorporated into phospholipid/alkanethiol bilayers on the gold electrode surface by a new, paint-freeze method to deposit a lipid monolayer on the self-assembled monolayers (SAMs) of alkanethiol. The advantages of this assembly system with a suitable function for investigating the ion selective transfer across the mimetic biomembrane are based on the characteristics of SAMs of alkanethiols and monensin. On the one hand, the SAMs of alkanethiols bring out their efficiency of packing and coverage of the metal substrate and relatively long-term stability; on the other hand, monensin improves the ion selectivity noticeably. The selectivity coefficients K-Na+,K-K+, K-Na+,K-Rb+ and K-Na+,K-Ag+ are 6 x 10(-2), 7.2 x 10(-3) and 30 respectively. However, the selectivity coefficient K-Na+,K-Li+ could not be obtained by a potentiometric method due to the specific interaction between Li+ and phospholipid and the lower degree of complexion between Li+ and monensin. The potential response of this bilayer system to monovalent ions is fairly good. For example, the slope of the response to Na+ is close to 60 mV per decade and its linearity range is from 10(-1) to 10(-5) M with a detection limit of 2 x 10(-6) M, The bilayer is stable for at least two months without changing its properties. This monensin incorporated lipid/alkanethiol bilayer is a good mimetic biomembrane system, which provides great promise for investigating the ion transfer mechanism across the biomembrane and developing a practical biosensor.
Resumo:
The reduction of Y(III) ions in molten chloride is known to be a one-step three electron reaction [1, 2, 3], but a voltammogram of YCl3 in molten LiCl-KCl-NaCl at a nickel electrode shows at least two reduction peaks of Y(III) ions, indicating the possibility of formation of Ni-Y intermetallic compounds. Using a galvanostatic electrolysis method, samples were prepared at several current densities at 450, 500, 600 and 700-degrees-C, respectively, and were identified with X-ray diffraction (XRD) and electron probe microanalysis (EPMA) methods. The results show that Ni2Y, Ni2Y3 and NiY can be produced by electrolysis and Ni2Y is found to be the predominant Ni-Y intermetallic compound under the experimental conditions. Nickel appears to diffuse in Ni2Y faster than yttrium, and the diffusion process is the rate determining step during Ni2Y formation.
Resumo:
Small amplitude potential step experiments were carried out to study the counterion transfer process in oxidized poly(3-methylthiophene) (PMT) film. The results demonstrate that anion transfer process in PMT film is migration rather than diffusion. A porous metal electrode model-single hole model, which takes into account both the ionic resistance of the film and the uncompensated solution resistance, was found suitable to describe the potential step experiments. According to this model, the ionic resistivity of oxidized PMT film was calculated to be 5.0 x 10(4) OMEGA.cm, and, in turn, the diffusion coefficent of ClO4- ion in PMT film 3.7 x 10(-9) cm2/s.
Resumo:
The H+, Li+, Na+, K+, Mg2+, Ca2+ and Ba2+ ion transfer across the water/nitrobenzene (NB) and water/1,2-dichloroethane (DCE) interfaces, facilitated by the ionophore ETH157, has been investigated by cyclic voltammetry (CV). The mechanism of the transfer process has been discussed, and the diffusion coefficients and the stability constants of the complexes formed in the nitrobenzene phase have been determined.
Resumo:
Reaction of lanthanoid trichloride with two equivalents of sodium t-butylcyclopentadienide in tetrahydrofuran affords bis(t-butylcyclopentadienyl)lanthanoid chloride complexes (t-BuCp)2LnCl. nTHF (Ln = Pr, Nd, n = 2; Ln = Gd, Yb, n = 1). The compound (t-BuCp)2PrCl.2THF (1) crystallizes from THF in monoclinic space group P2(1)/c with unit cell dimensions a = 15.080(3), b = 8.855(2), c = 21.196(5) angstrom, beta = 110.34(2)degrees, V = 2653.9 angstrom-3 and D(calcd) = 1.41 g/cm3 for Z = 4. The central metal Pr is coordinated to two t-BuCp ring centroids, one chlorine atom and two THF forming a distorted trigonal bipyramid. The crystal of (t-BuCp)2YbCl.THF (2) belongs to the monoclinic crystal system, space group P2(1)/n with a = 7.726(1), b = 12.554(2), c = 23.200(6) angstrom, beta = 97.77(2)degrees, V = 2229.56 angstrom-3, D(calcd) = 1.50 g/cm3 and Z = 4. The t-BuCp ring centroids, the chlorine atom and the oxygen atom of the THF describe a distorted tetrahedron around the central ion of ytterbium.
Resumo:
The antioxidant potency of high/low molecular weight quatemary chitosan derivatives was investigated employing various established systems in vitro, such as superoxide (O-2(center dot-)) and hydroxyl (center dot OH) radicals scavenging, reducing power and iron ion chelating. As expected, we obtained several satisfying results, as follow: firstly, low molecular weight quaternary chitosan had stronger scavenging effect on O-2(center dot-) and center dot OH than high molecular weight quaternary chitosan. Secondly, the reducing power of low molecular weight quaternary chitosan was more pronounced than that of high molecular weight quaternary chitosan. Thirdly, ferrous ion chelating potency were showed to increase first and decrease afterwards with increasing concentration for two kinds of quaternary chitosans, namely, they have not concentration-dependence. However, the scavenging rate and reducing power of high and low molecular weight quaternary chitosans increased with their increasing conc centrations, and hence were concentration-dependent. (c) 2007 Elsevier Masson SAS. All rights reserved.
Resumo:
The chloride extraction rules of iron artifacts were studied by immersion methods. Different chloride extraction results between the alkaline solution and a washing solution were obtained. The microstructure and the anti-corrosion performance of the samples before and after treatment, were, respectively studied by the scanning electron microscope (SEM) and the potentiodynamic scanning method. The results indicated that Cl- removed according to the diffusion law. The microstructure of the samples transformed after treatment. The rusts became more compact, and the porosity also increased. The chloride extraction effect in the washing solution was better than that in the NaOH solution.