207 resultados para CO2 levels


Relevância:

20.00% 20.00%

Publicador:

Resumo:

氮素是影响内蒙古温带典型草原植物生长和初级生产力的主要因素之一,土壤氮素的可利用性及其对全球环境变化的响应对于预测生态系统碳氮平衡显得尤为重要。空气中的游离氮和土壤中的有机氮必须通过固氮作用和矿化作用,转化为无机氮才能被绝大多数高等植物直接利用,氮素转化决定土壤氮素有效性。因此,研究环境变化对草原灌丛豆科固氮植物小叶锦鸡儿和草原优势植物种羊草土壤氮素转化重要生物过程的影响,对于进一步了解草原氮库变化及其对环境变化的可能响应有重要意义。 在中国科学院内蒙古草原生态系统定位站,利用开顶式生长室(Open-top chamber,OTC)控制实验模拟环境变化,经过三年的实验处理,研究氮素、水分和CO2浓度变化对小叶锦鸡儿根瘤生长和共生固氮、小叶锦鸡儿和羊草土壤净氮矿化速率的影响。观察小叶锦鸡儿根瘤形态和数量、测定根瘤长度和生物量以及固氮酶活性、测定土壤净氮矿化速率和土壤酶活性,探讨小叶锦鸡儿和羊草土壤氮素转化对环境变化响应机理。 结果表明,三年生桶培小叶锦鸡儿根瘤多着生于侧根,以浅黄色的小型球状根瘤为主,其次是棕褐色的棒状和纺锤状根瘤,较大型的褐色Y状根瘤相对较少。添加氮素极显著地抑制根瘤生长发育及其固氮酶活性,这种抑制效应随着水分增加和CO2浓度升高有所减缓。随着水分的增加,根瘤形态多样,根瘤着生部位由主根渐向侧根再向须根发展,根瘤数量和重量也显著增加。水分和CO2浓度升高,固氮酶活性增加但是未达到显著水平。小叶锦鸡儿根瘤生长及其固氮酶活性在加水条件下最好,水分可能是限制内蒙古半干旱草原小叶锦鸡儿固氮能力的关键因素。 环境变化影响小叶锦鸡儿土壤无机氮库。添加氮素处理,土壤无机氮库显著增加。添加氮素后,土壤脲酶活性显著降低,铵态氮和无机氮都出现明显的氮固持,但硝化速率增加,可能是由于添加氮素后土壤化学性质改变更利于硝化细菌进行硝化活动。随着水分和CO2浓度的升高,由于植物生长需求更多氮素的供应,土壤无机氮库显著降低。水分和CO2浓度处理对小叶锦鸡儿土壤脲酶活性和净氮矿化速率没有显著影响,但是能一定程度上减缓了氮素的负效应,促使无机氮的转化,使土壤微生物对铵态氮和无机氮的固持减少。但是蛋白酶活性和硝酸还原酶活性对三种环境因子响应均不敏感,脲酶对环境因子的变化最为敏感。小叶锦鸡儿土壤氮素转化与土壤理化性质密切相关,环境因子通过影响土壤脲酶活性以及土壤酸碱度等影响土壤矿化速率,进而影响土壤无机氮浓度和植物可利用氮。 羊草土壤无机氮库与小叶锦鸡儿土壤无机氮库对环境变化的响应较为一致,添加氮素羊草土壤无机氮含量显著增加,水分增加土壤无机氮含量显著降低。添加氮素使硝化速率显著增大,氨化速率和净氮矿化速率降低,但是未达到显著水平,铵态氮和无机氮出现固持现象。水分的增加降低土壤无机氮库,刺激脲酶活性,微生物对铵态氮的矿化作用增加,但是硝态氮的矿化作用受抑制,对净氮矿化没有影响。CO2浓度升高对羊草土壤无机氮库和土壤氮素矿化都没有显著地影响,但是CO2浓度升高在适宜水分下通过刺激土壤微生物活性,促进脲酶活性和无机氮的转化。羊草土壤酶活性对氮素和CO2浓度的响应与小叶锦鸡儿土壤酶活性的响应一致。 综上,不同环境因子对氮素转化过程影响不同,氮素添加抑制小叶锦鸡儿根瘤及其固氮酶活性,降低小叶锦鸡儿和羊草土壤净氮矿化速率。水分和CO2浓度升高一定程度上缓解了氮素对固氮酶活性以及土壤净氮素矿化速率的抑制作用,有利于土壤氮素转化。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

本研究首次揭示了七种苏铁类植物叶绿体的超微结构。即苏铁科(Cycadaceae)的攀枝花苏铁(C. panzhihuaensis).苏铁(C. revoluta)、叉叶苏铁(C.micholitzii)、 刺叶苏铁(C.rumphii和多歧苏铁(C.multipinnata),蕨铁科(Stangeriaceae)的蕨铁(Stangeria eriopus)和泽米科(Zamiaceae)的米德尔堡大苏铁(Encephalortos middelburgensis).根据它们叶绿体内膜结构的不同将其大体分为两种类型:1、阴生型叶绿体:多歧苏铁和刺叶苏铁为此类型,它们的叶绿体类囊体垛叠程度高,基粒垛较宽,单个基粒中类囊体的数量很多,有的甚至上百;2、阳生型叶绿体:攀枝花苏铁、米德尔堡大苏铁、苏铁、蕨铁和刺叶苏铁以及外类群的凤尾蕨(Pteris vittata)的叶绿体均有阳生型叶绿体的特征:类囊体膜垛叠程度低,基粒较小。根据它们叶绿体的结构特征,又将其分为两组: ( 1)攀枝花苏铁,米德尔堡大苏铁和叉叶苏铁叶绿体中均有类囊体膜膨大的现象: (2)苏铁和蕨铁在苏铁类中是比较原始的种类,它们的叶绿体与在系统进化上较苏铁类低等的凤尾蕨的叶绿体中都有几个基粒聚集成簇的现象,说明苏铁类在进化的同时一些较原始的性状仍保留了下来。这些苏铁都在温室相同的条件下生长了两年多,但它们的叶绿体结构仍然能够反应原产地生境特点,说明在长期进化中,叶绿体对环境的适应方式已在基因水平上稳定下来,苏铁类植物不同叶绿体结构的形成有其遗传基础。 多歧苏铁,攀枝花苏铁,叉叶苏铁的叶绿体膜垛叠程度依次降低,与此相应,它们的chla/b和F730/F684依次升高,反应了结构与功能的一致性。 选用具有阳生型叶绿体的攀枝花苏铁和有阴生型叶绿体的多歧苏铁用不同的C02浓度(350 umol mol-l和700umol mol-l)处理后观察其叶绿体结构的变化,结果发现C02浓度倍增对它们的叶绿体影响甚微,而作为对照的无论是C3植物小麦(Triticum italica)还是C4植物谷子(Setaria italica)在C02倍增的条件下叶绿体内均有大量淀粉粒积累,并有膜结构改变。这说明苏铁的叶绿体结构有保守性,这有可能是苏铁类能历经亿万年的沧桑而生存下来的结构基础之一。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

预测下世纪中叶,大气CO_2浓度将高到目前的两倍(即达到700μ1•1~(-1))。CO_2倍增对植物地上部的影响已经有了较多的研究,胆是由于方法学上的困难,至今关于倍增CO_2对植物根及根区微生物的研究仍是非常匮乏。本文应用国际上最新的根研究方法,以根系为中心,研究开顶式CO_2C熏蒸培养室中,CO_2倍增条件下根系与地上部,根系与根区微生物[共生的泡囊-丛枝菌根(VAM)真菌,非共生的土壤微生物]的关系。 1. CO_2倍增对根系的影响目前CO_2倍增对根系影响的研究多集中在根生物量的测定,或根/冠比值的测定,而善于其它参数如根长度则很少涉及,而根表面的反应目前还未见文献报道。本实验以幼苗期小麦“青323”(Triticum aestivum)、水稻“中作 29”(Oryza sativa)、大豆“科农4号”(Glycine max)、玉米“农大3138”(Zea mays)、甜高粱“M-81E”(Sorghum saccharatum)为材料,研究CO_2倍增对植物生物量的影响,发现CO_2倍增使C_3植物水稻、大豆的地上部、根系干重均显著增加,使小麦的根系干重显著增加,地上部无显著差异;C_4植物玉米和甜高粱的地上部和根系均没有显著反应。植物干重反应资料表明在光合产物的分配方面,C_3和C_4植物之间存在巨大的差异。 为了解根系获取土壤资源的能力的变化,我们对根系总长度和总表面积进行了分析。用样格交叉法研究根系长度的变化,结果显示,幼苗期的小麦、大豆的根系长度均被显著促进,尤其值得注意的是,尽管玉米根系干重没有显著改变,但是根长度已发生显著变化。同时应用研究根系表面积的最新方法-Na NO_2吸附法,研究发现幼苗期小麦、水稻和大豆的根系表面积在CO_2倍增条件下均显著增加,C_4植物玉米的根表面积亦有显著增加,但甜高粱的根表面积却没有显著反应,这说明即使在C_4植物类型中,根系表面积的反应在不同物种间仍存在很大差异。由于根长度和根表面积增幅大于根干重的增幅,所以推断在CO_2倍增条件下,植物根系细根比例增加,这有利于植物获取更多的养分。由于不同植物之间根系的反应不同,这将改变群落中原有的根系竞争关系,从而影响群落中物种的组成。 2. CO_2倍增对VAM真菌侵染强度和活力的影响本文应用NBT染色法,并结合浸染强度等级和活力等级标准,首次对CO_2倍增条件下,植物VAM真菌的侵染强度和活力的变化进行了检测。对比常规的酸性品红乳酸甘油法和NBT法,发现两者在显示侵染强度时元显著差异,但后者能同时用于侵染活力等级的研究。对幼苗期大豆以及不同生长期的小麦和玉米根系VAM真菌的侵染强度和活力进行观测,结果显示,倍增CO_2对大豆的侵染强度和活力均没有显著效应;使幼苗期玉米的侵染强度显著增加,但侵染活力无显著差异,但随生长期的推移,侵染强度所受的CO_2倍增效应逐渐减小,与14天苗龄(DAP)和35DAP相比,侵染活力在22DAP时所受效应最大;使10DAP小麦的VAM侵染强度和活力均显著增加,而且这种效应在30DAP小麦中的表现与10DAP小麦的相同。说明C_3、C_4植物中,菌根真菌对CO_2倍增反应不同,这也许是C_3、C_4植物对CO_2倍增反应不同的原因之一。倍增CO_2改善了VAM真菌的发育,所以较之于非菌根侵染植物,菌根侵染植物将因为CO_2倍增而获益更多,另一方面不同种植物中,VAM真菌的发育反应不同,这将使植物群落中,根系获取无机营养的竞争能力发生变化,最终影响植物群落的物种丰度和生物多样性以及群落的演替。 3. CO_2倍增对非共生土壤微生物的影响CO_2倍增使生长70天的小麦、垂柳(Salix babylonica)、藜(Chenopodium album)、繁穗苋(Amaranthus cruentus)品种“红苋K112”的地上部和根系的生物量增加。以这些植物所在土壤为材料,用氯仿熏蒸直接提取法研究土壤微生物生物量C(C_(mic))和生物量N(N_(mic))的变化,发现CO_2倍增尽管使各类型植物的C_4植物)土壤中C_(mic)的变化趋势不完全相同(小麦和藜所在土壤的C_(mic)下降,垂柳中C_(mic)升高,而在繁穗苋中无显著差异),但N_(mic)在各物种所在土壤中均有不同程度的上升,在繁穗苋中增幅最大。C_(mic):N_(mic)比值在4个物种所在土壤中均明显下降,这意味着CO_2倍增后在植物生长后期,土壤微生物活性提高,分解植物凋落物和土壤中其它有机质的能力加强,从而改善贫瘠土壤中有机质质量。 4.CO_2倍增对植物呼吸和光合作用及C素积累的影响 1)CO_2倍增对植物暗呼吸的影响:以杜仲(Eucommia ulmoides)、紫花苜蓿(Medicago sativa)和玉米等10种植物的离体成熟叶片或整株为材料,研究不同测定温度(15~35 ℃)下,CO_2倍增对植物暗呼吸的影响。结果表明:在较低温度(15 ℃、20 ℃)下,CO_2倍增对植物暗呼吸没有显著效应;在较高温度(30 ℃、35 ℃)时,多数被测植物的暗呼吸显著增强。由于植物在不同温度时它们的暗咱吸受CO_2倍增的促进幅度不同,这将导致不同地区(环境温度不同)的植物暗呼吸反应有差异,而且由于不同物种的暗呼吸增幅不同,综合光合效应,它们的生物量的反应也会不同。 2)CO_2倍增对整株植物的CO_2气体交换及植物C素积累的影响:利用自行设计的一套CO_2气体测定装置,首次尝试同步测定CO_2倍增条件下幼苗期小麦地下部和地上部的气体交换在昼夜24小时内的变化及C素的积累。发现CO_2倍增不仅使小麦地上部C素的积累增加,也使地下部释放的C素增加,但整株植物的C素收入仍高于对照两倍多,这从植物与环境的CO_2气体交换角度为CO_2倍增促进植物生物量的增加提供了依据。并首次提出:植物的整体性及植物所在的环境条件(主要是温度和光照强度)决定着植物暗呼吸对CO_2倍增的响应方式:被抑制或无效应。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With comparative genomics approaches, we evaluated the evolutionary characteristics of conservation of exons which are expressed abundantly, moderately or lowly in mammals. Using non-coding regions and pseudogenes as controls, sequence identity, phastCons