589 resultados para CO2 atmosphere


Relevância:

20.00% 20.00%

Publicador:

Resumo:

本研究首次揭示了七种苏铁类植物叶绿体的超微结构。即苏铁科(Cycadaceae)的攀枝花苏铁(C. panzhihuaensis).苏铁(C. revoluta)、叉叶苏铁(C.micholitzii)、 刺叶苏铁(C.rumphii和多歧苏铁(C.multipinnata),蕨铁科(Stangeriaceae)的蕨铁(Stangeria eriopus)和泽米科(Zamiaceae)的米德尔堡大苏铁(Encephalortos middelburgensis).根据它们叶绿体内膜结构的不同将其大体分为两种类型:1、阴生型叶绿体:多歧苏铁和刺叶苏铁为此类型,它们的叶绿体类囊体垛叠程度高,基粒垛较宽,单个基粒中类囊体的数量很多,有的甚至上百;2、阳生型叶绿体:攀枝花苏铁、米德尔堡大苏铁、苏铁、蕨铁和刺叶苏铁以及外类群的凤尾蕨(Pteris vittata)的叶绿体均有阳生型叶绿体的特征:类囊体膜垛叠程度低,基粒较小。根据它们叶绿体的结构特征,又将其分为两组: ( 1)攀枝花苏铁,米德尔堡大苏铁和叉叶苏铁叶绿体中均有类囊体膜膨大的现象: (2)苏铁和蕨铁在苏铁类中是比较原始的种类,它们的叶绿体与在系统进化上较苏铁类低等的凤尾蕨的叶绿体中都有几个基粒聚集成簇的现象,说明苏铁类在进化的同时一些较原始的性状仍保留了下来。这些苏铁都在温室相同的条件下生长了两年多,但它们的叶绿体结构仍然能够反应原产地生境特点,说明在长期进化中,叶绿体对环境的适应方式已在基因水平上稳定下来,苏铁类植物不同叶绿体结构的形成有其遗传基础。 多歧苏铁,攀枝花苏铁,叉叶苏铁的叶绿体膜垛叠程度依次降低,与此相应,它们的chla/b和F730/F684依次升高,反应了结构与功能的一致性。 选用具有阳生型叶绿体的攀枝花苏铁和有阴生型叶绿体的多歧苏铁用不同的C02浓度(350 umol mol-l和700umol mol-l)处理后观察其叶绿体结构的变化,结果发现C02浓度倍增对它们的叶绿体影响甚微,而作为对照的无论是C3植物小麦(Triticum italica)还是C4植物谷子(Setaria italica)在C02倍增的条件下叶绿体内均有大量淀粉粒积累,并有膜结构改变。这说明苏铁的叶绿体结构有保守性,这有可能是苏铁类能历经亿万年的沧桑而生存下来的结构基础之一。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

预测下世纪中叶,大气CO_2浓度将高到目前的两倍(即达到700μ1•1~(-1))。CO_2倍增对植物地上部的影响已经有了较多的研究,胆是由于方法学上的困难,至今关于倍增CO_2对植物根及根区微生物的研究仍是非常匮乏。本文应用国际上最新的根研究方法,以根系为中心,研究开顶式CO_2C熏蒸培养室中,CO_2倍增条件下根系与地上部,根系与根区微生物[共生的泡囊-丛枝菌根(VAM)真菌,非共生的土壤微生物]的关系。 1. CO_2倍增对根系的影响目前CO_2倍增对根系影响的研究多集中在根生物量的测定,或根/冠比值的测定,而善于其它参数如根长度则很少涉及,而根表面的反应目前还未见文献报道。本实验以幼苗期小麦“青323”(Triticum aestivum)、水稻“中作 29”(Oryza sativa)、大豆“科农4号”(Glycine max)、玉米“农大3138”(Zea mays)、甜高粱“M-81E”(Sorghum saccharatum)为材料,研究CO_2倍增对植物生物量的影响,发现CO_2倍增使C_3植物水稻、大豆的地上部、根系干重均显著增加,使小麦的根系干重显著增加,地上部无显著差异;C_4植物玉米和甜高粱的地上部和根系均没有显著反应。植物干重反应资料表明在光合产物的分配方面,C_3和C_4植物之间存在巨大的差异。 为了解根系获取土壤资源的能力的变化,我们对根系总长度和总表面积进行了分析。用样格交叉法研究根系长度的变化,结果显示,幼苗期的小麦、大豆的根系长度均被显著促进,尤其值得注意的是,尽管玉米根系干重没有显著改变,但是根长度已发生显著变化。同时应用研究根系表面积的最新方法-Na NO_2吸附法,研究发现幼苗期小麦、水稻和大豆的根系表面积在CO_2倍增条件下均显著增加,C_4植物玉米的根表面积亦有显著增加,但甜高粱的根表面积却没有显著反应,这说明即使在C_4植物类型中,根系表面积的反应在不同物种间仍存在很大差异。由于根长度和根表面积增幅大于根干重的增幅,所以推断在CO_2倍增条件下,植物根系细根比例增加,这有利于植物获取更多的养分。由于不同植物之间根系的反应不同,这将改变群落中原有的根系竞争关系,从而影响群落中物种的组成。 2. CO_2倍增对VAM真菌侵染强度和活力的影响本文应用NBT染色法,并结合浸染强度等级和活力等级标准,首次对CO_2倍增条件下,植物VAM真菌的侵染强度和活力的变化进行了检测。对比常规的酸性品红乳酸甘油法和NBT法,发现两者在显示侵染强度时元显著差异,但后者能同时用于侵染活力等级的研究。对幼苗期大豆以及不同生长期的小麦和玉米根系VAM真菌的侵染强度和活力进行观测,结果显示,倍增CO_2对大豆的侵染强度和活力均没有显著效应;使幼苗期玉米的侵染强度显著增加,但侵染活力无显著差异,但随生长期的推移,侵染强度所受的CO_2倍增效应逐渐减小,与14天苗龄(DAP)和35DAP相比,侵染活力在22DAP时所受效应最大;使10DAP小麦的VAM侵染强度和活力均显著增加,而且这种效应在30DAP小麦中的表现与10DAP小麦的相同。说明C_3、C_4植物中,菌根真菌对CO_2倍增反应不同,这也许是C_3、C_4植物对CO_2倍增反应不同的原因之一。倍增CO_2改善了VAM真菌的发育,所以较之于非菌根侵染植物,菌根侵染植物将因为CO_2倍增而获益更多,另一方面不同种植物中,VAM真菌的发育反应不同,这将使植物群落中,根系获取无机营养的竞争能力发生变化,最终影响植物群落的物种丰度和生物多样性以及群落的演替。 3. CO_2倍增对非共生土壤微生物的影响CO_2倍增使生长70天的小麦、垂柳(Salix babylonica)、藜(Chenopodium album)、繁穗苋(Amaranthus cruentus)品种“红苋K112”的地上部和根系的生物量增加。以这些植物所在土壤为材料,用氯仿熏蒸直接提取法研究土壤微生物生物量C(C_(mic))和生物量N(N_(mic))的变化,发现CO_2倍增尽管使各类型植物的C_4植物)土壤中C_(mic)的变化趋势不完全相同(小麦和藜所在土壤的C_(mic)下降,垂柳中C_(mic)升高,而在繁穗苋中无显著差异),但N_(mic)在各物种所在土壤中均有不同程度的上升,在繁穗苋中增幅最大。C_(mic):N_(mic)比值在4个物种所在土壤中均明显下降,这意味着CO_2倍增后在植物生长后期,土壤微生物活性提高,分解植物凋落物和土壤中其它有机质的能力加强,从而改善贫瘠土壤中有机质质量。 4.CO_2倍增对植物呼吸和光合作用及C素积累的影响 1)CO_2倍增对植物暗呼吸的影响:以杜仲(Eucommia ulmoides)、紫花苜蓿(Medicago sativa)和玉米等10种植物的离体成熟叶片或整株为材料,研究不同测定温度(15~35 ℃)下,CO_2倍增对植物暗呼吸的影响。结果表明:在较低温度(15 ℃、20 ℃)下,CO_2倍增对植物暗呼吸没有显著效应;在较高温度(30 ℃、35 ℃)时,多数被测植物的暗呼吸显著增强。由于植物在不同温度时它们的暗咱吸受CO_2倍增的促进幅度不同,这将导致不同地区(环境温度不同)的植物暗呼吸反应有差异,而且由于不同物种的暗呼吸增幅不同,综合光合效应,它们的生物量的反应也会不同。 2)CO_2倍增对整株植物的CO_2气体交换及植物C素积累的影响:利用自行设计的一套CO_2气体测定装置,首次尝试同步测定CO_2倍增条件下幼苗期小麦地下部和地上部的气体交换在昼夜24小时内的变化及C素的积累。发现CO_2倍增不仅使小麦地上部C素的积累增加,也使地下部释放的C素增加,但整株植物的C素收入仍高于对照两倍多,这从植物与环境的CO_2气体交换角度为CO_2倍增促进植物生物量的增加提供了依据。并首次提出:植物的整体性及植物所在的环境条件(主要是温度和光照强度)决定着植物暗呼吸对CO_2倍增的响应方式:被抑制或无效应。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The physiological responses of Nitzschia palea Kutzing, a freshwater diatom, to elevated CO2 were investigated and compared with those of a marine diatom, Chaetoceros muelleri Lemmermann previously reported. Elevated CO2 concentration to 700 mu l/L increased the dissolved inorganic carbon (DIC) and lowered the pH in the cultures of N. palea, thus enhancing the growth by 4%-20% during the whole growth period. High CO2-grown N. palea cells showed lower levels of dark respiration rates and higher I (k) values. Light-saturated photosynthetic rates and photosynthetic efficiencies decreased in N. palea with the doubling CO2 concentration in airflow to the bottom of cultures, although the doubling CO2 concentration in airflow to the surface cultures had few effects on these two photosynthetic parameters. N. palea cells were found to be capable of using HCO3 (-) in addition to gaseous CO2, and the CO2 enrichment decreased their affinity for HCO3 (-) and CO2. Although doubled CO2 level would enhance the biomass of N. palea and C. muelleri to different extents, compared with the marine diatom, it had a significant effect on the specific growth rates of N. palea. In addition, the responses of photosynthetic parameters of N. palea to doubled CO2 concentration were almost opposite to those of C. muelleri.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chaetoceros muelleri (Lemn.) was cultured with nitrite (NO2-) or nitrate (NO3-) as the sole nitrogen source and aerated with air or with CO2-enriched air. Cells of C. muelleri excreted into the medium nitrite produced by reduction of nitrate when grown with 100 mu M NaNO3 as nitrogen source. Accordingly, NO2- concentration reached 10.4 mu M after 95 h at the low CO2 condition (aerated with air); while the maximum NO2- concentration was only around 2.0 mu M at the high CO2 condition (aerated with 5% CO2 in air), furthermore, after 30 h it decreased to no more than 1.0 mu M. NO2- was almost assimilated in 80 h when C. muelleri was cultured at the high CO2 condition with 100 mu M NaNO2 as sole nitrogen source. At the high CO2 condition, after 3 h the activity of nitrite reductase was as much as 50% higher than that at the low CO2 condition. It was indicated that enriched CO2 concentration could inhibit nitrite excretion and enhance nitrite assimilation by cells. Therefore, aeration with enriched CO2 might be an effective way to control nitrite content in aquaculture systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although studies on carbon burial in lake sediments have shown that lakes are disproportionately important carbon sinks, many studies on gaseous carbon exchange across the water-air interface have demonstrated that lakes are supersaturated with CO2 and CH4 causing a net release of CO2 and CH4 to the atmosphere. In order to more accurately estimate the net carbon source/sink function of lake ecosystems, a more comprehensive carbon budget is needed, especially for gaseous carbon exchange across the water-air interface. Using two methods, overall mass balance and gas exchange and carbon burial balance, we assessed the carbon source/sink function of Lake Donghu, a subtropical, eutrophic take, from April 2003 to March 2004. With the overall mass balance calculations, total carbon input was 14 905 t, total carbon output was 4950 1, and net carbon budget was +9955 t, suggesting that Lake Donghu was a great carbon sink. For the gas exchange and carbon burial balance, gaseous carbon (CO2 and CH4) emission across the water-air interface totaled 752 t while carbon burial in the lake sediment was 9477 t. The ratio of carbon emission into the atmosphere to carbon burial into the sediment was only 0.08. This low ratio indicates that Lake Donghu is a great carbon sink. Results showed good agreement between the two methods with both showing Lake Donghu to be a great carbon sink. This results from the high primary production of Lake Donghu, substantive allochthonous carbon inputs and intensive anthropogenic activity. Gaseous carbon emission accounted for about 15% of the total carbon output, indicating that the total output would be underestimated without including gaseous carbon exchange. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The lunar day differs in length from the solar day so that times of low tide vary from day to day. Thus, aerial exposure of intertidal seaweeds may be during the day or during the night. We measured photosynthetic CO, assimilation rates of the intertidal green macroalga Ulva lactuca during exposures of varied daily timings during sunny days of summer to establish how photosynthetic performance responds to emersion timing under varied CO2 levels [at ambient (360 ppmv) and 2x ambient (720 ppmv) atmospheric CO2 concentrations]. There was an increase in net photosynthetic rates following some duration of exposure when the initial timing of exposure occurred during early morning (06.30 h) and late afternoon (17.15 h). In contrast, net rates exhibited a sharp decline with exposure duration when the initial timing of exposure occurred at 09.30 h, 15.30 h and especially at noon (12.30 h), implying the occurrence of a severe photoinhibition resulting from mid-day insolation. Doubled atmospheric CO2 concentration significantly enhanced the emersed photosynthetic rates, indicating that the emersed photosynthesis is CO2-limited at ambient CO2 levels. However, increasing CO2 barely stimulates the emersed photosynthetic rates during mid-day insolation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photosynthesis by phytoplankton cells in aquatic environments contributes to more than 40% of the global primary production (Behrenfeld et al., 2006). Within the euphotic zone (down to 1% of surface photosynthetically active radiation [PAR]), cells are exposed not only to PAR (400-700 nm) but also to UV radiation (UVR; 280-400 nm) that can penetrate to considerable depths (Hargreaves, 2003). In contrast to PAR, which is energizing to photosynthesis, UVR is usually regarded as a stressor (Hader, 2003) and suggested to affect CO2-concentrating mechanisms in phytoplankton (Beardall et al., 2002). Solar UVR is known to reduce photosynthetic rates (Steemann Nielsen, 1964; Helbling et al., 2003), and damage cellular components such as D1 proteins (Sass et al., 1997) and DNA molecules (Buma et al., 2003). It can also decrease the growth (Villafane et al., 2003) and alter the rate of nutrient uptake (Fauchot et al., 2000) and the fatty acid composition (Goes et al., 1994) of phytoplankton. Recently, it has been found that natural levels of UVR can alter the morphology of the cyanobacterium Arthrospira (Spirulina) platensis (Wu et al., 2005b). On the other hand, positive effects of UVR, especially of UV- A (315-400 nm), have also been reported. UV- A enhances carbon fixation of phytoplankton under reduced (Nilawati et al., 1997; Barbieri et al., 2002) or fast-fluctuating (Helbling et al., 2003) solar irradiance and allows photorepair of UV- B-induced DNA damage (Buma et al., 2003). Furthermore, the presence of UV-A resulted in higher biomass production of A. platensis as compared to that under PAR alone (Wu et al., 2005a). Energy of UVR absorbed by the diatom Pseudo-nitzschia multiseries was found to cause fluorescence (Orellana et al., 2004). In addition, fluorescent pigments in corals and their algal symbiont are known to absorb UVR and play positive roles for the symbiotic photosynthesis and photoprotection (Schlichter et al., 1986; Salih et al., 2000). However, despite the positive effects that solar UVR may have on aquatic photosynthetic organisms, there is no direct evidence to what extent and howUVR per se is utilized by phytoplankton. In addition, estimations of aquatic biological production have been carried out in incubations considering only PAR (i. e. using UV-opaque vials made of glass or polycarbonate; Donk et al., 2001) without UVR being considered (Hein and Sand-Jensen, 1997; Schippers and Lurling, 2004). Here, we have found that UVR can act as an additional source of energy for photosynthesis in tropical marine phytoplankton, though it occasionally causes photoinhibition at high PAR levels. While UVR is usually thought of as damaging, our results indicate that UVR can enhance primary production of phytoplankton. Therefore, oceanic carbon fixation estimates may be underestimated by a large percentage if UVR is not taken into account.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Successions of lake ecosystems from clear-water, macrophyte-rich conditions into turbid states with abundant phytoplankton have taken place in many shallow lakes in China. However, little is know about the change of carbon fluxes in lakes during such processes. We conducted a case study in Lake Biandantang to investigate the change of carbon fluxes during such a regime shift. Dissolved aquatic carbon and gaseous carbon (methane (CH4) and carbon dioxide (CO2)) across air-water interface in three sites with different vegetation covers and compositions were studied and compared. CH4 emissions from three sites were 0.62 +/- 0.36, 0.70 +/- 0.36, and 1.31 +/- 0.57 mg m(-2) h(-1), respectively. Correlation analysis showed that macrophytes, rather than phytoplankton, directly positively affected CH4 emission. CO2 fluxes of three sites in Lake Biandantang were significantly different, and the average values were 77.8 +/- 20.4, 52.2 +/- 14.1 and 3.6 +/- 26.8 mg m(-2) h(-1), respectively. There were an evident trend that the larger macrophyte biomass, the lower CO2 emissions. Correlation analysis showed that in different sites, dominant plant controlled CO2 flux across air-water interface. In a year cycle, the percents of gaseous carbon release from lake accounting for net primary production were significantly different (from 39.3% to 2.8%), indicating that with the decline of macrophytes and regime shift, the lake will be a larger carbon source to the atmosphere. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nannochloropsis sp. was grown with different levels of nitrate, phosphate, salinity and temperature with CO2 at 2,800 mu l l(-1). Increased levels of NaNO3 and KH2PO4 raised protein and polyunsaturated fatty acids (PUFAs) contents but decreased carbohydrate, total lipid and total fatty acids (TFA) contents. Nannochloropsis sp. grew well at salinities from 22 to 49 g l(-1), and lowering salinity enhanced TFA and PUFAs contents. TFA contents increased with the increasing temperature but PUFAs contents decreased. The highest eicosapentaenoic acid (EPA, 20:5 omega 3) content based on the dry mass was above 3% under low N (150 mu M NaNO3) or high N (3000 mu M NaNO3) condition. Excessive nitrate, low salinity and temperature are thus favorable factors for improving EPA yields in Nannochloropsis sp.