174 resultados para CO ALLOY CATALYSTS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is indispensable to remove CO at the level of less than 50ppm in H-2-rich feed gas for the proton exchange membrane (PEM) fuel cells. In this paper, catalyst with high activity and selectivity, and a microchannel reactor for CO preferential oxidation (PROX) have been developed. The results indicated that potassium on supported Rh metal catalysts had a promoting effect in the CO selective catalytic oxidation under H-2-rich stream, and microchannel reactor has an excellent ability to use in on-board hydrogen generation system. CO conversion keeps at high levels even at a very high GHSV as 500 000 h(-1), so, miniaturization of hydrogen generation system can be achieved by using the microchannel reactor. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, the structural and surface properties of Co-loaded sulfated zirconia (SZ) catalysts were studied by X-ray diffraction (XRD), N-2 adsorption, NH3-TPD, FT-IR spectroscopy, H-2-TPR, UV-vis diffuse reflectance spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS), and NO-TPD. NH3-TPD and FT-IR spectra results of the catalysts showed that the sulfation process of the support resulted in the generation of strong Bronsted and Lewis acid sites, which is essential for the SCR of NO with methane. On the other hand, the N-2 adsorption, H-2-TPR, UV/vis DRS, and XPS of the catalysts demonstrated that the presence of the SO42- species promoted the dispersion of the Co species and prevented the formation Of Co3O4. Such an increased dispersion of Co species suppressed the combustion reaction of CH4 by O-2 and increased the selectivity toward NO reduction. The NO-TPD proved that the loading of Co increased the adsorption of NO over SZ catalysts, which is another reason for the promoting effect of Co. (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present work, several carbon supported PtSn and PtSnRu catalysts were prepared with different atomic ratios and tested in direct ethanol fuel cells (DEFC) operated at lower temperature (T=90 degreesC). XRD and TEM results indicate that all of these catalysts consist of uniform nano-sized particles of narrow distribution and the average particle sizes are always less than 3.0 nm. As the content of Sn increases, the Pt lattice parameter becomes longer. Single direct ethanol fuel cell tests were used to evaluate the performance of carbon supported PtSn catalysts for ethanol electro-oxidation. It was found that the addition of Sn can enhance the activity towards ethanol electro-oxidation. It is also found that a single DEFC of Pt/Sn atomic ratioless than or equal to2, "Pt1Sn1/C, Pt3Sn2/C, and Pt2Sn1/C" shows better performance than those with Pt3Sn1/C and Pt4Sn1/C. But even adopting the least active PtSn catalyst, Pt4Sn1/C, the DEFC also exhibits higher performance than that with the commercial Pt1Ru1/C, which is dominatingly used in PEMFC at present as anode catalyst for both methanol electro-oxidation and CO-tolerance. At 90 degreesC, the DEFC exhibits the best performance when Pt2Sn1/C is adopted as anode catalysts. This distinct difference in DEFC performance between the catalysts examined here is attributed to the so-called bifunctional mechanism and to the electronic interaction between Pt and Sn. It is thought that -OHads, Surface Pt active sites and the ohmic effect of PtSn/C catalyst determines the electro-oxidation activity of PtSn catalysts with different Pt/Sn ratios. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We found a novel morphology variation of carbon deposition derived from CH4 decomposition over NI-based catalysts. By altering the chemical composition and particle size of Ni-based catalysts, carbon filaments, nanofibres and nanotubes were observed over conventional Ni/y-Al2O3, Ni-Co/gamma-Al2O3 and nanoscale Ni-Co/gamma-Al2O3 catalysts, respectively. The simple introduction of Co into a conventional Ni/gamma-Al2O3 catalyst can vary the carbon deposition from amorphous filamentous carbon to ordered carbon fibres. Moreover, carbon nanotubes with uniform diameter distribution can be obtained over nanosized Ni-Co/gamma-Al2O3 catalyst particles. In addition, the oxidation behaviour of the different deposited carbon was studied by using a temperature-programmed oxidation technique. This work provides a simple strategy to control over the size and morphology of the carbon deposition from catalytic decomposition of CH4.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present work several Pt-based anode catalysts supported on carbon XC-72R were prepared with a novel method and characterized by means of XRD, TEM and XPS analysis. It was found that all these catalysts are consisted of uniform nanosized particles with sharp distribution and Pt lattice parameter decreases with the addition of Ru or Pd and increases with the addition of Sn or W. Cyclic voltammetry (CV) measurements and single direct ethanol fuel cell (DEFC) tests jointly showed that the presence of Sn, Ru and W enhances the activity of Pt towards ethanol electro-oxidation in the following order: Pt1Sn1/C > Pt1Ru1/C > Pt1W1/C > Pt1Pd1/C > Pt/C. Moreover, Pt1Ru1/C further modified by W and Mo showed improved ethanol electro-oxidation activity, but its DEFC performance was found to be inferior to that measured for Pt1Sn1/C. Under this respect, several PtSn/C catalysts with different Pt/Sn atomic ratio were also identically prepared and characterized and their direct ethanol fuel cell performances were evaluated. It was found that the single direct ethanol fuel cell having Pt1Sn1/C or Pt3Sn2/C or Pt2Sn1/C as anode catalyst showed better performances than those with Pt3Sn1/C or Pt4Sn1/C. It was also found that the latter two cells exhibited higher performances than the single cell using Pt1Ru1/C, which is exclusively used in PEMFC as anode catalyst for both methanol electro-oxidation and CO-tolerance. This distinct difference in DEFC performance between the catalysts examined here would be attributed to the so-called bifunctional mechanism and to the electronic interaction between Pt and additives. It is thought that an amount of -OHads, an amount of surface Pt active sites and the conductivity effect of PtSn/C catalysts would determine the activity of PtSn/C with different Pt/Sn ratios. At lower temperature values or at low current density regions where the electro-oxidation of ethanol is considered not so fast and its chemisorption is not the rate-determining step, the Pt3Sn2/C seems to be more suitable for the direct ethanol fuel cell. At 75 degreesC, the single ethanol fuel cell with Pt3Sn2/C as anode catalyst showed a comparable performance to that with Pt2Sn1/C, but at higher temperature of 90 degreesC, the latter presented much better performance. It is thought from a practical point of view that Pt2Sn1/C, supplying sufficient -OHads and having adequate active Pt sites and acceptable ohmic effect, could be the appropriate anode catalyst for DEFC. (C) 2003 Elsevier B.V. All rights reserved.