125 resultados para Boiling heat transfer


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Transient flow patterns and bubble slug lengths were investigated with oxygen gas (O-2) bubbles produced by catalytic chemical reactions using a high speed camera bonded with a microscope. The microreactor consists of an inlet liquid plenum, nine parallel rectangular microchannels followed by a micronozzle, using the MEMS fabrication technique. The etched surface was deposited by the thin platinum film, which is acted as the catalyst. Experiments were performed with the inlet mass concentration of the hydrogen peroxide from 50% to 90% and the pressure drop across the silicon chip from 2.5 to 20.0 kPa. The silicon chip is directly exposed in the environment thus the heat released via the catalytic chemical reactions is dissipated into the environment and the experiment was performed at the room temperature level. It is found that the two-phase flow with the catalytic chemical reactions display the cyclic behavior. A full cycle consists of a short fresh liquid refilling stage, a liquid decomposition stage followed by the bubble slug flow stage. At the beginning of the bubble slug flow stage, the liquid slug number reaches maximum, while at the end of the bubble slug flow stage the liquid slugs are quickly flushed out of the microchannels. Two or three large bubbles are observed in the inlet liquid plenum, affecting the two-phase distributions in microchannels. The bubble slug lengths, cycle periods as well as the mass flow rates are analyzed with different mass concentrations of hydrogen peroxide and pressure drops. The bubble slug length is helpful for the selection of the future microreactor length ensuring the complete hydrogen peroxide decomposition. Future studies on the temperature effect on the transient two-phase flow with chemical reactions are recommended.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The methane hydration process is investigated in a semi-continuous stirred tank reactor. Liquid temperatures and reaction rates without stirrer are compared with those occurring with stirrer, while at the same time better stirring conditions of the methane hydration process are given by the experiments. Some basic data of fluid mechanics, for example, stirring Reynolds number, Froucle number and stirrer power, are calculated during the methane hydration process, which can be applied to evaluate stirrer capacity and provide some basic data for a scaled up reactor. Based on experiment and calculations in this work, some conclusions are drawn. First, the stirrer has great influence on the methane hydration process. Batch stirring is helpful to improve the mass transfer and heat transfer performances of the methane hydration process. Second, induction time can be shortened effectively by use of the stirrer. Third, in this paper, the appropriate stirring velocity and stirring time were 320 rpm and 30 min, respectively, at 5.0 MPa, for which the storage capacity and reaction time were 159.1 V/V and 370 min, respectively. Under the condition of the on-flow state, the initial stirring Reynolds number of the fluid and the stirring power were 12,150 and 0.54 W, respectively. Fourth, some suggestions, for example, the use of another type of stirrer or some baffles, are proposed to accelerate the methane hydration process. Comparing with literature data, higher storage capacity and hydration rate are achieved in this work. Moreover, some fluid mechanics parameters are calculated, which can provide some references to engineering application.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We propose here a new method to make ceramics insensitive to thermal shock up to their melting temperature. In this method the surface of ceramics was biomimetically roughened into nanofinned surface that creates a thin air layer enveloping the surface of the ceramics during quenching. This air layer increases the heat transfer resistance of the surface of the ceramics by about 10 000 times so that the strong thermal gradient and stresses produced by the steep temperature difference in thermal shock did not occur both on the actual surface and in the interior of the ceramics. This method effectively extends the applications of existing ceramics in the extreme thermal environments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

采用RNG(renormalization group)k-ε湍流模型和近壁区的Wolfstein一方程模型对超临界压力下大庆RP-3航空煤油在水平圆管内的流动和换热特性进行了数值研究.超临界压力下,由于航空煤油在拟临界点附近热物性的剧烈变化,浮升力将引起显著的二次流动.二次流动使得水平圆管的下表面湍流强度和对流换热增强,而上表面的湍流强度和对流换热减弱.最后分析了两种水平管内对流换热受浮升力影响判别标准在超临界流体中的适用性

Relevância:

80.00% 80.00%

Publicador:

Resumo:

本文针对超燃冲压发动机再生冷却系统运行条件,实验研究了大庆RP-3煤油在超临界压力下的流动和传热特性,目的在于研究煤油在各种工况下的流动参数变化以及对流传热规律. 煤油通过二级煤油加热/输运系统加热,试验的煤油压力约2.6M~5.0MPa,油温约300~800 K. 相应的壁面热流密度为10~300 kW/m2. 通过油温与壁温的同步测量,结合非定常传热分析,获得了超临界压力下、亚/超临界温度范围内煤油的流动和传热物理参量的变化曲线

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Thermal effects of the heat transfer at free surface (represented by Biot number) on the Rayleigh-Marangoni-Benard instability in a system of liquid-porous layers with top free surface are investigated numerically. The results indicate that this thermal effect can evidently lead to the mode transition of convection, which is overlooked in previous works. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

对超临界压力下大庆RP-3航空煤油在小管道内的流动、传热过程进行了数值研究. 湍流模拟采用了 RNG k-ε两方程模型和Wolfstein一方程模型结合的两层模型;同时, 采用煤油的10组分替代模型以及NIST Supertrapp程序库对大庆3号航空煤油的热物理和输运特性进行了确定. 圆管传热的计算条件为:入口压力4 MPa, 入口温度300 K, 质量流量范围:0.06~0.12 kg/s, 壁面热流密度范围:300~700 kW/m~2. 计算结果显示, 煤油的流动和传热特性比水、二氧化碳等简单化合物复杂得多. 在超临界压力下, 煤油的吸热升温导致其热物理特性以及流动特性均发生剧烈变化, 其中, 雷诺数沿管道方向上升了至少一个量级, 而普朗特数下降了一个量级. 在加热开始段, 煤油的对流传热系数迅速上升;当壁面温度超过其拟临界温度后, 对流传热系数略有所回落;随着煤油温度的进一步上升, 传热系数又得到明显增强. 计算表明, 煤油对流换热特性的变化与煤油复杂的高温热物理特性以及湍流流动在近壁区的增强和抑止有关

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Thermally induced evolution of phase transformations is a basic physical-chemical process in the dissociation of gas hydrate in sediment (GHS). Heat transfer leads to the weakening of the bed soil and the simultaneous establishment of a time varying stress field accompanied by seepage of fluids and deformation of the soil. As a consequence, ground failure could occur causing engineering damage or/and environmental disaster. This paper presents a simplified analysis of the thermal process by assuming that thermal conduction can be decoupled from the flow and deformation process. It is further assumed that phase transformations take place instantaneously. Analytical and numerical results are given for several examples of simplified geometry. Experiments using Tetra-hydro-furan hydrate sediments were carried out in our laboratory to check the theory. By comparison, the theoretical, numerical and experimental results on the evolution of dissociation fronts and temperature in the sediment are found to be in good agreement.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

本文采用磁流体动力学(MHD)模型对直流等离子体自由燃烧电弧和电弧炉内部的流动与传热进行了数值模拟研究. 通过对基于磁矢量势描述的电磁场方程组和流体力学方程组的耦合迭代计算, 求解得到了流体的温度场和速度场等, 计算结果清晰地反映出等离子体电弧的高温阴极射流现象, 并与同行的实验和数值结果进行了对比. 本模拟方法和结果对于电弧炉的工业应用和优化设计有重要的指导意义.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A modeling study is conducted to investigate the plasma flow and heat transfer characteristics of low-power (kW class) arc-heated thrusters (arcjets) with 2:1 hydrogen/nitrogen to simulate decomposed hydrazine as the propellant. The all-speed SIMPLE algorithm is employed to solve the governing equations, which take into account the effects of compressibility, the Lorentz force and Joule heating, as well as the temperature- and pressure-dependence of the gas properties. Typical computed results about the temperature, velocity and Mach number distributions within arcjet thruster are presented for the case with arc current of 9 A and inlet stagnant pressure of 3.3×105 Pa to show the flow and heat transfer characteristics. It is found that the propellant is heated mainly in the near-cathode and constrictor region, with the highest plasma temperature appearing near the cathode tip, and the flow transition from the subsonic to supersonic regime occurs within the constrictor region. The effect of gas viscosity on the plasma flow within arcjet thruster is examined by an additional numerical test using artificially reduced values of gas viscosity. The test results show that the gas viscosity appreciably affects the plasma flow and the performance of the arcjet thruster for the cases with the hydrazine or hydrogen as the propellant. The integrated axial Lorentz force in the thruster nozzle is also calculated and compared with the thrust force of the arcjet thruster. It is found that the integrated axial Lorentz force is much smaller than the thrust force for the low-power arcjet thruster. Modeling results for the NASA 1-kW class arcjet thruster with simulated hydrazine as the propellant are found to be reasonably consistent with available experimental data.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The seafloor of central Eckernförde Bay is characterised by soft muddy sediments that contain free methane gas. Bubbles of free gas cause acoustic turbidity which is observed with acoustic remote sensing systems. Repeated surveys with subbottom profiler and side scan sonar revealed an annual period both of depth of the acoustic turbidity and backscatter strength. The effects are delayed by 3–4 months relative to the atmospheric temperature cycle. In addition, prominent pockmarks, partly related to gas seepage, were detected with the acoustic systems. In a direct approach gas concentrations were measured from cores using the gas chromatography technique. From different tests it is concluded that subsampling of a core should start at its base and should be completed as soon as possible, at least within 35 min after core recovery. Comparison of methane concentrations of summer and winter cores revealed no significant seasonal variation. Thus, it is concluded that the temperature and pressure influences upon solubility control the depth variability of acoustic turbidity which is observed with acoustic remote sensing systems. The delay relative to the atmospheric temperature cycle is caused by slow heat transfer through the water column. The atmospheric temperature cycle as ‘exiting function’ for variable gas solubility offers an opportunity for modelling and predicting the depth of the acoustic turbidity. In practice, however, small-scale variations of, e.g., salinity, or gas concentration profile in the sediment impose limits to predictions. In addition, oceanographic influences as mixing in the water column, variable water inflow, etc. are further complications that reduce the reliability of predictions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sixteen polycyclic aromatic hydrocarbons (PAHs) and 28 polychlorinated biphenyls (PCBs) were measured at a 2-cm interval in a core sample from the middle of the southern Yellow Sea for elucidating their historical variations in inflow and sources. The chronology was obtained using the Pb-210 method. PAHs concentrations decreased generally with depth and two climax values occurred in 14-16 cm and 20-22 cm layers, demonstrating that the production and usage of PAHs might reach peaks in the periods of 1956-1962 and 1938-1944. The booming economy and the navy battles of the Second World War might explain why the higher levels were detected in the two layers. The result of principal component analysis (PCA) revealed that PAHs were primarily owing to the combustion product. Down-cored variation of PCB concentrations was complex. Higher concentrations besides the two peaks being the same as PAHs were detected from 4 to 8 cm, depositing from 1980 to 1992, which probably resulted from the disposal of the out-dated PCB-containing equipment. The average Cl percentage of PCBs detected was similar to that of the mixture of Aroclor 1254 and 1242, suggesting they might origin from the dielectrical and heat-transfer fluid. The total organic carbon (TOC) content played a prevalent role in the adsorption of high molecular weight PAHs (>= 4-ring), while no obvious relationship among total PCBs, the concentration of congeners, and TOC was found.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The water-heat transfer process between land and atmosphere in Haibei alpine meadow area has been systematically observed. A multi-layer coupling model for land-atmosphere interaction was presented with special attention paid to the moisture transfer in leaf stomata under unsaturated condition. A profound investigation on the physical process of turbulent transfer inside the vegetation has been performed with a revised formula of water absorption for root system. The present model facilitates the study of vertically distributed physical variables in detail. Numerical simulation was conducted according to the transfer process of Kinesia humility meadow in the area of Haibei Alpine Meadow Ecosystem Station, CAS. The calculated results agree well with observation.