539 resultados para Beam aperture
Polaring beam splitter of two-layer dielectric rectangular transmission gratings in Littrow mounting
Resumo:
A deep binary silicon grating as high-extinction-ratio reflective polarizing beam splitter (PBS) at the wavelength of 1550 nm is presented. The design is based on the phenomenon of total internal reflection (TIR) by using the rigorous coupled wave analysis (RCWA). The extinction ratio of the rectangular PBS grating can reach 2.5×105 with the optimum grating period of 397 nm and groove depth of 1.092 μm. The effciencies of TM-polarized wave in the 0th order and TE-polarized wave in the −1st order can both reach unity at the Littrow angle. Holographic recording technology and inductively coupled plasma (ICP) etching could be used to fabricate the silicon PBS grating.
Resumo:
I show that the research reported by Arieli et al. [Appl. Opt. 86, 9129 (1997)] has two serious mistakes: One is that an important factor is lost in the formula used in that study to determine the x-direction coordinate transformation; the other is the conclusion that the geometrical-transformation approach given by Arieli et al. can provide a smooth phase distribution. A potential research direction for obtaining a smooth phase distribution for a generic two-dimensional beam-shaping problem is stated. (C) 1998 Optical Society of America.
Resumo:
A relatively simple transform from an arbitrary solution of the paraxial wave equation to the corresponding exact solution of the Helmholtz wave equation is derived in the condition that the evanescent waves are ignored and is used to study the corrections to the paraxial approximation of an arbitrary free-propagation beam. Specifically, the general lowest-order correction field is given in a very simple form and is proved to be exactly consistent with the perturbation method developed by Lax et nl. [Phys. Rev. A 11, 1365 (1975)]. Some special examples, such as the lowest-order correction to the paraxial approximation of a fundamental Gaussian beam whose waist plane has a parallel shin from the z = 0 plane, are presented. (C) 1998 Optical Society of America.
Resumo:
We present what we believe is a novel technique based on the moire effect for fully diagnosing the beam quality of an x-ray laser. Using Fresnel diffraction theory, we investigated the intensity profile of the moire pattern when a general paraxial beam illuminates a pair of Ronchi gratings in the quasi-far field. Two formulas were derived to determine the beam quality factor M-2 and the effective radius of curvature R-e from the moire pattern. On the basis of the results, the far-field divergence, the waist location, and the radius can be calculated further. Finally, we verified the approach by use of numerical simulation. (C) 1999 Optical Society of America [S0740-3232(99)01502-1].
Resumo:
Based on the ripple transfers of electric-field amplitude and phase in frequency tripling, simple formulas are derived for the harmonic laser's beam-quality factor M-3omega(2), with an arbitrary fundamental incidence to ideal nonlinear crystals. Whereas the harmonic beam's quality is generally degraded, the beam's divergence is similar to that of the fundamental after nonlinear frequency conversion. For practical crystals with periodic surface ripples that are caused by their machining, a multiorder diffractive model is presented with which the focusing properties of harmonic beams can be studied. Predictions of the theories are shown to be in excellent agreement with full numerical simulations. (C) 2002 Optical Society of America.
Resumo:
A laser beam automatic alignment system is applied in a multipass amplifier of the SG-III prototype laser. Considering the requirements of the SG-III prototype facility, by combining the general techniques of the laser beam automatic alignment system, according to the image relayed of the pinholes in the spatial filter, and utilizing the optical position and the spatial distribution of the four pinholes of the main spatial filter in the multipass amplifier of the SG-III prototype, a reasonable and optimized scheme for automatic aligning multipass beam paths is presented. It is demonstrated on the multipass amplifier experimental system. (C) 2004 Society of Photo-Optical Instrumentation Engineers.
Resumo:
Analytic propagation expressions of pulsed Gaussian beam are deduced by using complex amplitude envelope representation and complex analytic signal representation. Numerical calculations are given to illustrate the differences between them. The results show that the major difference between them is that there exists singularity in the beam obtained by using complex amplitude envelope representation. It is also found that singularity presents near propagation axis in the case of broadband and locates far from propagation axis in the case of narrowband. The critical condition to determine what representation should be adopted in studying pulsed Gaussian beam is also given. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Microstructure optical fibers with flat-top fundamental mode are first proposed by introducing a low-index inner core into the core of index-guiding microstructure optical fibers. The design guidelines and characteristics of beam-shaping microstructure optical fibers are demonstrated. The interrelationships of inner-core index with laser wavelength, air hole diameter and size of inner core are investigated. The influence of the relative size of inner core on the spatial profile of the fundamental mode is demonstrated. Moreover, sensitivity of the flat-top fundamental mode profile from the slight change of the optimum inner-core index value is studied. Starting from these results we deduce that it is possible to fabricate beam-shaping microstructure fibers with nowadays technique. (C) 2005 Elsevier B.V. All rights reserved.