126 resultados para Asymmetrical space
Resumo:
In this paper, the confined crystallization and phase transition behaviors of n-octadecane in microcapsules with a diameter of about 3 Pm were studied with the combination of differential scanning calorimetry (DSC), temperature dependent Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD).
Resumo:
Hyperbranched polymers with numerous pendent norbornene functionalities have been synthesized via the radical polymerization of a novel asymmetrical divinyl monomer hearing a higher reactivity methacrylate group and it lower reactivity norbornene group. Mediated by a rapid reversible addition-fragmentation chain transfer (RAFT) equilibrium, the concentration of polymeric chain radicals is decreased, and thus the gelation did not occur until higher monomer conversions (ca. 90%). An increase in reaction temperature call also significantly promote the formation of the hyperbranched structure owing to the decreased stability of the intermediate radicals derived from the norbornene group, which was confirmed by a model copolymerization system of two single vinyl monomers with similar structures to the vinyl groups in the asymmetrical divinyl monomer. Furthermore, Tri-SEC and conventional Sin-SEC as well as H-1 NMR.
Resumo:
Branched polyacrylonitriles were prepared via the one-pot radical copolymerization of acrylonitirle and an asymmetric divinyl monomer (allyl methacrylate) that possesses both a higher reactive methacrylate and a lower reactive allyl. RAFT technique was used to keep a low-propagation chain concentration via a fast reversible chain transfer euilibration and thus the cross-linking was prevented until a high level of monomer conversions. This novel strategy was demonstrated to engenerate a branched architecture with abundant pendant functional vinyl and nitrile groups, and controlled molecular weight as a behavior of controlled/living radical polymerization characteristics. The effect of the various experimental parameters, including temperature, brancher to monomer molar ratio, and chain transfer agent to initiator molar ratio, on the control Of moleculer dimension (molecular weight and polydispersity indices) and the degree of branching were investigated in detail. Moreover, H-1 NMR and gel permeation chromatography confirm the branched architecture of the resultant polymer. The intrinsic viscosity of the copolymer is also lower than the linear counterpart.
Resumo:
New asymmetrical aromatic dichlorophthalimide monomers containing pendant groups (trifluoromethyl or methyl) were conveniently prepared from inexpensive and commercially available compounds. With these monomers, a new class of soluble polyimides with a regioirregular structure within the polymer backbone was obtained by the Ni(0)-catalyzed polymerization method. The structures of the polymers were confirmed by various spectroscopic techniques. The polyimides displayed better solubility and higher thermal stability than the corresponding regular polyimides. In addition, fluorinated polyimides in this study had low dielectric constants ranging from 2.52 to 2.78, low moisture absorptions of less than 0.59%, and low thermal expansion coefficients between 10.6 and 19.7 ppm/degrees C. The oxygen permeability coefficients and permeability selectivity of oxygen to nitrogen of the films were in the ranges of 2.99-4.20 barrer and 5.55-7.50, respectively. We have demonstrated that the synthetic pathway for polyimides provides a successful approach to increasing the solubility and processability of polyimides without sacrificing their thermal stability.
Resumo:
Well-faceted hexagonal ZnO microprisms with regular interior space have been successfully prepared by a template-free hydrothermal synthetic route. The morphologies of the products depend on the experimental conditions such as the solvent, the concentration of ammonia aqueous solution, and the reaction temperature. Through manipulation of the aging time, the as-prepared ZnO can be controlled as a monodispersed hexagonal twinning solid or as hollow microprisms. Moreover, the evolution process of the hollow ZnO nanoarchitecture after reaction for 2, 6, 12, and 24 h has been investigated by field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). A possible growth mechanism has also been proposed and discussed. Furthermore, the photoluminescence (PL) measurement exhibits the unique emitting characteristic of hollow ZnO nanostructures.
Resumo:
Reversible addition-fragmentation chain transfer (RAFT) mediated radical polymerizations of allyl methacrylate and undecenyl methacrylate, compounds containing two types of vinyl groups with different reactivities, were investigated to provide hyperbranched polymers. The RAFT agent benzyl dithiobenzoate was demonstrated to be an appropriate chain-transfer agent to inhibit crosslinking and obtain polymers with moderate-to-high conversions. The polymerization of allyl methacrylate led to a polymer without branches but with five- or six-membered rings. However, poly(undecenyl methacrylate) showed an indication of branching rather than intramolecular cycles. The hyperbranched structure of poly(undecenyl methacrylate) was confirmed by a combination of H-1, C-13, H-1-H-1 correlation spectroscopy, and distortionless enhancement by polarization transfer 135 NMR spectra. The branching topology of the polymers was controlled by the variation of the reaction temperature, chain-transfer-agent concentration, and monomer conversion. The significantly lower inherent viscosities of the resulting polymers, compared with those of linear analogues, demonstrated their compact structure,
Resumo:
A new index, i.e., the periphery representation of the projection of a molecule from 3D space to a 2D plane is described. The results, correlation with toxicity of substituted nitrobenzenes, obtained by using periphery descriptors are much better than that obtained by using the areas (i.e., shadows) of projections of the compounds. Even better results were achieved by using the combination of periphery descriptors and the projections areas as well as the indicated variable K reflecting the action of group NO position on the benzene ring.
Resumo:
Crystallization and phase transition behaviors of n-nonadecane in microcapsules with a diameter of about 5 mu m were studied with the combination of differential scanning calorimetry ( DSC) and synchrotron radiation X-ray diffraction ( XRD). As evident from the DSC measurement, a surface freezing monolayer, which is formed in the microcapsules before the bulk crystallization, induces a novel metastable rotator phase ( RII), which has not been reported anywhere else. We argue that the existence of the surface freezing monolayer decreases the nucleating potential barrier of the RII phase and induces its appearance, while the lower free energy in the confined geometry turns the transient RII phase to a " long- lived" metastable phase.
Resumo:
An asymmetrical double Schiff-base Cu(II) mononuclear complex, HCuLp (H(3)Lp is N-3-carboxylsalicylidene-N'-5-chlorosalicylaldehyde-1,3-diaminopropane) and a heterometal trinuclear complex with double molecular structure (CuLp)(2)Co center dot 5H(2)O have been synthesized and characterized by means of elemental analyses, IR and electronic spectra. The crystal structure of the heterotrinucler complex was determined by X-ray analysis. Each asymmetric unit within the unit cell of the complex contains two heterotrinuclear neutral molecules (a) [CuLpCoCuLp], (b) [(CuLpH(2)O) CoCuLp] and four uncoordinated water molecules. In the two neutral molecules, the central Co2+ ions are located at the site of O-6 with a distorted octahedral geometry, one terminal Cu2+ ion (Cu(3)) at the square-pyramidal environment of N2O3, and the other three at the square planar coordination geometry with N2O2 donor atoms. Magnetic properties of the heterotrinucler complex have been determined in the temperature range 5-300 K, indicating that the interaction between the central Co2+ ion and the outer Co2+ ions is antiferromagnetic.
Resumo:
Halfsandwich iron dicarbonyl complex [eta(5)-C5H3(t-Bu)(2)]Fe(CO)(2)Cl(1) reacts with 1, 2-dilithium diseleno carborane Li(2)Se(2)C(2)B(10)H10 (2) to give a binuclear iron carborane complex [eta(5)-C5H3(t-Bu)(2)](2)Fe-2(CO)(3) Se2C2B10H10(3). The X-ray diffraction analysis of complex 3 reveals that one of the iron atoms is chiral.
Resumo:
The half-sandwich methylcyclopentadlenyl iron carbonyl complex reacted with 1,2-dilithium diselenolate carborane Li2Se2C2B10H10 (1) which was produced by the insertion of element Se into 1, 2-dilithium carborane to give a half-sandwich binuclear iron carborane complex Cp'Fe-2(2)(CO) 3Se2C2B10H10 (3). X-ray structural analysis of complex 3 reveals that one of the iron atoms is chiral.
Resumo:
A mathematical model on computation of molecular similarity was suggested, The algorithmic techniques for measuring the degree of similarity between pairs of three-dimensional chemical molecules was represented by modified interatomic distance matrices. Current work was carried out on Indigo 2 work station with Sybyl software. Four groups of molecules were used to compute the molecules similarity to testing the mathematical model with satisfactory results.