223 resultados para Aqueous electrolyte
Resumo:
The electrochemical properties Of PW12O403- (abbreviated as PW12) anion in poly(ethylene glycol) (PEG) have been studied by cyclic voltammetry, complex impedance and FT-IR spectroscopy. The PW12 anion in PEG-LiClO4 electrolyte shows reasonable facile electrochemistry, and the diffusion coefficients Of PW12 were measured with microelectrode. It is shown that ionic conductivity of polymer electrolytes based on low molecular weight PEG can be improved by the addition of PW12. The increase of conductivity is coupled with decrease of transient cross-links density of polymer chains which is evidenced by the downshift of C-O-C stretching mode. The phenomena are explained in view of ion-ion and ion-polymer interactions.
Resumo:
A new series of oxides, Ce6-xErxMoO15-delta (0.0 less than or equal to x less than or equal to 1.5), was synthesized using wet-chemistry techniques. The precursors and resultant oxide powders were characterized by differential thermal analysis/thermogravimetry, x-ray diffraction, and IR, Raman and x-ray photoelectron spectroscopy. The formation temperature of the powders was found to be as low as 350degreesC. Ce6-xErxMoO15-delta crystallized to a fluorite-related cubic structure. The electrical conductivity of the samples was investigated by using ac impedance spectroscopy. This showed that the presence of Er was related to the oxygen-ion conductivity, and that the highest oxygen-ion conductivity was found in Ce6-xErxMoO15-delta (x = 0.4), ranging from 5.9 x 10(-5) S cm(-1) at 300degreesC to 1.26 x 10(-2) S cm(-1) at 700degreesC, respectively. This kind of material shows a potential application in intermediate-temperature solid oxide fuel cells.
Resumo:
It is reported for the first time that the performance of the electrochemical H2S sensor with the Nation membrane pre-treated with the concentrated H2SO4 as the solid electrolyte is much more stable than that for the sensor with the Nation membrane without H2SO4 pretreatment. The sensitivity of the sensor is about 2.92 muA/ppm. The response time of the sensor is about 9 s. The detection limit is about 0.1 ppm. Therefore, this kind of the electrochemical H2S gas sensor may be desirable for the practical application.
Resumo:
In this paper, a novel monoaza-B15C5 derivative, N-(2-tosylamino)-isopentyl-monoaza-15-crown-5 (L), is used as an ionophore to facilitate alkali metal cations transfer across a water/1,2-dichloroethane (W/DCE) interface. Well-defined voltammetric behaviors are observed at the polarized W/DCE interfaces supported at micro- and nano-pipets except Cs+. The diffusion coefficient of this ionophore in the DCE phase is calculated to be equal to (3.3+/-0.2) x 10(-6) cm(2) s(-1). The experimental results indicate that a 1:1 (metal: ionophore) complex is formed at the interface with a TIC/TID mechanism. The selectivity of this ionophore towards alkali ions follows the sequence Na+ > Li+ > K+ > Rb+ > Cs+. The logarithm of the association constants (log beta(1)(0)) of the LiL+, NaL+, KL+ and RbL+ complexes in the DCE phase are calculated to be 10.6, 11.6, 9.0 and 7.1, respectively. The kinetic parameters are determined by steady-state voltammograms using nanopipets. The standard rate constants (k(0)) for Li+, Na+, K+ and Rb+ transfers facilitated by L are 0.54+/-0.05, 0.63+/-0.09, 0.51+/-0.04 and 0.46+/-0.06 cm s(-1), respectively. The pH values of aqueous solution have little effect on the electrochemical behaviors of these facilitated processes. The results predicate that this new type of ionophore might be useful to fabricate electrochemical sensor of sodium ion.
Resumo:
Polymeric electrolytes of (PEO1)(10) LiClO4-Al2O3 (PEO: poly (ethyleneoxide)) and (PEO2)(16)LiClO4-EC (EC: ethylene carbonate) were prepared. We proposed an equivalent circuit and gave the meaning of the concerned circuit elements. When the impedance spectrum deformed severely, the ionic conductivity of polymer electrolyte was determined by using the maximum of imaginary impedance, which is a convenient method.
Resumo:
Gold nanopartides were Immobilized onto the electrode surface by simple self-assembly technique. Interestingly, the ensembles of these nanopartides exhibit quantized charging behaviors in aqueous solution. Possible mechanism for such behaviors was proposed.
Resumo:
A droplet of aqueous solution containing a certain molar ratio of redox couple is first attached onto a platinum electrode surface, then the resulting drop electrode is immersed into the organic solution containing very hydrophobic electrolyte. Combined with reference and counter electrodes, a classical three-electrode system has been constructed, Ion transfer (IT) and electron transfer (ET) are investigated systematically using three-electrode voltammetry. Potassium ion transfer and electron transfer between potassium ferricyanide in the aqueous phase and ferrocene in nitrobenzene are observed with potassium ferricyanide/potassium ferrocyanide as the redox couple. Meanwhile, the transfer reactions of lithium, sodium, potassium, proton and ammonium ions are obtained with ferric sulfate/ferrous sulfate as the redox couple. The formal transfer potentials and the standard Gibbs transfer energy of these ions are evaluated and consistent with the results obtained by a four-electrode system and other methods.
Resumo:
A study of potassium ion transfer across a water \ 1,2-dichloroethane (W \ DCE) interface facilitated by dibenzo-18-crown-6 (DB18C6) with various phase volume ratio systems is presented. The key point was that a droplet of aqueous solution containing a redox couple, Fe(CN)(6)(3-)/Fe(CN)(6)(4-), with equal molar ratio, was first attached to a platinum electrode surface, and the resulting droplet electrode was then immersed into the organic solution containing a hydrophobic electrolyte to construct a platinum electrode/aqueous phase/organic phase system. The interfacial potential of the W \ DCE within the series could be externally controlled because the specific compositions in the aqueous droplet make the Pt electrode function like a reference electrode as long as the concentration ratio of Fe(CN)(6)(3-)/Fe(CN)(6)(4-) remains constant. In this way, a conventional three-electrode potentiostat can be used to study the ion transfer process at a liquid \ liquid (L \ L) interface facilitated by an ionophore with variable phase volume ratio (r = V-o/V-w). The effect of r on ion transfer and facilitated ion transfer was studied in detail experimentally. We also demonstrated that as low as 5 x 10(-8) M DB18C6 could be determined using this method due to the effect of the high phase volume ratio.
Resumo:
The Pt/C catalysts were prepared with pine active carbon and Vulcan XC-72 active carbon as the supports. The performances of the Pt/C catalysts in polymer electrolyte membrane fuel cell were compared. The result indicates that the performance of Pt/Vulcan XC-72 is better than that of Pt/pine. The physical and chemical properties of the two active carbons were measured using several analysis techniques. It was found that the pore size, specific conductivity and the surface function group significantly influence the performance of the electrocatalyst.
Resumo:
A novel approach of generating cathodic electrochemiluminescence lof Ru(bpy)(3)(2+) at -0.4 V triggered by reactive oxygen species is reported for detecting alkylamines and some organic acids.
Resumo:
The electrochemiluminescence (ECL) of dichlorotris (1,10-phenanthroline) ruthenium (11) [Ru(phen)(3)(2+)] with peroxydisulfate (S2O82-) was first described. The use of carbon paste electrodes, organic solvent modified electrodes, allowed obtaining ECL in purely aqueous solution. The ECL produced by the reaction of electrogenerated C Ru(phen)(3)(2+) with the strongly oxidizing intermediate SO4-., was observed only when the applied potential was negative enough to reduce Ru(phen)(3)(2+). In comparison with Ru(bpy)(3)(2+)/S2O82- ECL, the Ru(phen)(3)(2+)/O-8(2-)/S2O82- ECL was more stable in aqueous solution. It was not affected by the storage of the carbon paste electrodes, and it quenched only at quite high S2O82- concentrations. The ECL intensity was a function of S2O82- concentration, increasing linearly with the S2O82- concentration from 5 X 10(-6) to 2 X 10(-3) mol l(-1), and dropping off sharply at S2O82- concentration higher than 20 mmol l(-1). The proposed ECL method with Ru(phen)(3)(2+) was sensitive and selective for the determination of S2O82-. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The effects of plasticizer ethylene carbonate (EC) on the AC impedance spectra and the ionic conductivity are reported. With increasing of EC concentration the semicircle in high frequency disappears, and the slope of the straight line in low frequency decreases. The data obtained from impedance experiments can be explained using an equivalent circuit proposed. On the other hand, the room temperature conductivity increases with EC concentration because of the increase of the segmental flexibility of PEO. For lower EC concentration samples, the temperature dependence of conductivity in low temperature range follows Arrhenius type, but when EC concentration is larger than 20%, the temperature dependence of conductivity obeys the Vogel-Tamman-Fulcher (VTF) equation in all temperature ranges.
Resumo:
Electrochemical properties of rare earth AB(3)-type hydrogen storage alloys as negative electrode material and a polymer instead of 6 M KOH aqueous solution as solid state electrolyte in MH-Ni battery have been investigated at room temperature and 28degreesC first time. The partial replacement of Ni by Al and Mn elements increases the specific capacity and cycle stability of the alloy.
Resumo:
Heterogeneous electron transfer rate constants (k(s)) and diffusion coefficients (D) of the ferrocene and its derivatives. in a new synthetic comb polymer solvent, poly(dimethylsiloxane-g-monomethylether polyethylene glycol) (SCP), and several other polymer solvents were estimated by using microelectrodes. Also, the influence of various supporting electrolytes on k(s) and D of ferrocene was studied. It was shown that k(s) and D of ferrocene decreased with increasing anionic size of the supporting electrolyte, but k(s) tended to increase with increasing radius of the solvated cation. Also, the cationic size of the supporting electrolytes had little effects on D. The values of k(s) and D for the ferrocene derivatives in the polymer solvents were in sharp contrast to those in monomeric solvents. Thus. the k(s) values were proportional to D in the polymer solvents. which indicates that solvent dynamics control of the electrode reaction. The values of k(s) and D of ferrocene in SCP were larger than those in other polymer solvents indicating that SCP is a good polymer solvent. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
The electrochemiluminescence (ECL) of the Ru(bgy)(3)(2-)/S2O82- system in purely aqueous solution at a carbon paste electrode can be clearly seen with the naked eye for Ru(bpy)(3)(2+) concentrations higher than 1 mmol L-1. The log-log plot of the emmitted light intensity vs. Ru(bpy)(3)(2+) concentration is linear over the region 10(-3)-10(-7) mol L-1 with a correlation coefficient of 0.997. The ECL intensity increases linearly with the S2O82- concentration from 10(-6) mol L-1 up to 0.3 mmol L-1 and drops off sharply at concentrations higher than 1 mmol L-1. In addition, a weak ECL signal was obtained when the potential was biased more negative than -0.6 V even in the absence of S2O82-.