120 resultados para Antitheft devices.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two kinds of carbazole-based molecules connected with diphenylamine and carbazole are synthesized by modified Ullmann reaction. Comparative study on their thermal stability, redox behavior, hole injection and transport properties are present. The results demonstrate that the carbazole-based molecules are very promising hole-transporting materials for electroluminescent devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An efficient organic light-emitting device using a trivalent europium (Eu) complex Eu(Tmphen)(TTA)(3) (TTA=thenoyltrifluoroacetone, Tmphen=3,4,7,8-tetramethyl-1,10-phenanthroline) as the dopant emitter was fabricated. The devices were a multilayer structure of indium tin oxide/N,N-diphenyl-N,N-bis(3-methylphenyl)-1,1-biphenyl-4,4-diamine (40 nm)/ Eu complex:4,4-N,N-dicarbazole-biphenyl (1%, 30 nm)/2,9-dimethyl,4,7-diphenyl-1,10phenanthroline (20 nm)/AlQ (30 nm)/LiF (1 nm)/Al (100 nm). A pure red light with a peak of 612 nm and a half bandwidth of 3 nm, which is the characteristic emission of trivalent europium ion, was observed. The devices show the maximum luminance up to 800 cd/m(2), an external quantum efficiency of 4.3%, current efficiency of 4.7 cd/A, and power efficiency of 1.6 lm/W. At the brightness of 100 cd/m(2), the quantum efficiency reaches 2.2% (2.3 cd/A).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a blue organic light-emitting device having an emissive layer of 2-(2-hydroxyphenyl)-5-phenyl-1,3,4-oxadiazole (HOXD), that exhibits excited state intramolecular proton transfer (ESIPT). The device had a luminance efficiency of 0.8 cd/A and a maximum brightness of 870 cd/m(2). Electroluminescence spectra revealed a dominating peak at 450 nm and two additional peaks at 480 and 515 nm with a full width at half maximum of 50 nm. Our studies indicate that some EL may originate from the triplet excitation state of the enol form of HOXD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of alternating copolymers containing triphenylamine (TPA) moieties and oligomeric PPV segments in the main chain have been synthesized by Wittig condensation. The resulting polymers exhibit good thermal stability with decomposition temperatures (Tds) above 305 degreesC under nitrogen at 10 degreesC/min, and high glass transition temperatures (Tgs). They show intense photoluminescence in solution and film. The single-layer electroluminescent device using TAA-PV1 as emissive layer emits green light at 522nm with a turn-on voltage of 6V and maximum brightness of about 200cd/m(2) at 20V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Organic electroluminescent devices with a structure of ITO/ploy (9-vinylcarbazole)/tris (8-hydroxyquinoline) aluminum (Alq3)/Mg:Ag are fabricated at different substrate temperatures (77, 298, and 438 K) during Alq3 deposition. It is found that the surface morphologies of Alq3 thin films greatly affect the I-V characteristics of the devices by the contact area between metal cathode and light-emitting layer. There is an increase in the luminous efficiency of the devices in the order 77 K < 298 K < 438 K. We attribute this trend to different structures of Alq3 thin films. (C) 2001 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A navel thermally stable terbium carboxylate complex, Tb(MTP)(3)(phen) (MTP=monotetradecyl phthalate, phen=1,10-phehanthroline), was synthesized and characterized. The device structure of glass substrate/indium-tin-oxide/poly(p-phenylenevinylene) (PPV)/poly (N-vinycarbazole) (PVK):Tb(MTP)(3)(phen): 1,3,4-oxadizole derivative (PBD)/tris(8-hydroxyquinoline) (Alq(3))/aluminum (Al) was employed to study the electroluminescent properties of Tb(MTP)(3)(phen). A green emission with extremely sharp spectral band of less than 10 nm at 544 nm peak wavelength was observed. A maximum luminance of 152 cd/m(2) and an external quantum efficiency of 0.017% were achieved at a drive voltage of 24 V. A possible mechanism of energy transfer based on the polymer doped with lanthanide organic complex was also proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An Electroluminescent device with PVK film doped with Eu(TTA)(3) Phen and PBD was fabricated. The device structure of glass substrate/indium-tin-oxide/PPV/PVK : Eu(TTA)3 Phen : PBD/Alq(3)/Al was employed. A sharply red electroluminescence with a maximum luminance of 56. 8 cd/m(2) at 48 V was achieved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electroluminescent devices with PVK film doped with monohexadecyl phthalate terbium and PBD were fabricated. The device structure of glass substrate/ITO/PPV/PVK:Tb(MHP)(3):PBD/Alq(3)/Al was employed. The emissive layer was formed by a spin-casting technique. The EL cells exhibited characteristic emission of terbium ions with a maximum luminance of 74 cd/m(2) at 18 V. (C) 1998 Elsevier Science S.A. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eu3+ narrow band emitting EL device with PPV, Alq(3) as hole and electron transportation layers has been prepared. The emitting layer, which consists of PVK, Eu(DBM)(3) and PBD is formed by spin-casting method. A maximum luminance of 52cd.m(-2) is achieved from the device.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electroluminescent devices with PVK film doped with Eu(DBM)(3)(phen) and PBD were fabricated. The device structure of glass substrate/indium-tin-oxide/PPV/PVK:Eu(DBM)(3)-(phen):PBD/Alq(3)/Al was employed. The emissive layer was formed by spin-casting method. A sharply red electroluminescence with a maximum luminance of 114.4 cd/m(2) was achieved at 42 V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bright blue electroluminescent devices have been fabricated using poly (N-vinylcarbazole) (PVK) doped with perylene as the emissive layer, poly(p-phenylenevinylene) (PPV) as the hole-transporting layer, 2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole (PBD), tris(8-hydroxyquinoline)aluminum (Alq(3)) as the electron-transporting layer, and Al as the cathode. A luminance of 700 cd/m(2) and a luminescent efficiency of 0.8% are achieved at a drive voltage of 36 V. In the experiment, it is found that the introduction of electron-transporting layer PBD has a great effect on the emissive color of the electroluminescent devices prepared by PVK doped with perylene. Yellow-green emission is observed from the device structure of glass substrate/indium-tin-oxide/PVK:perylene/Al. The possible emissive mechanisms are given. The effect of the transporting layer on the electroluminescence is also discussed. (C) 1997 Elsevier Science S.A.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bright blue polymer light-emitting diodes have been fabricated by using the poly(p-phenylenevinylene)-based copolymers with 10 C long aliphatic chains as the electroluminescent layers, PBD in PMMA and Alq(3) as the electron-transporting layers, and aluminum as the cathode. The multilayer structure devices show 190 cd/m(2) light-emitting brightness at 460 nm, 15 V turn-on vol- tage. It is found that the intensities of photoluminescence and electroluminescence (EL) increase with increasing aliphatic chain length, the EL intensity and operation stability of these polymer light-emitting diodes can be improved by reasonable design of the structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Apoptosis is the outcome of a metabolic cascade that results in cell death in a controlled manner. Due to its important role in maintaining balance in organisms, in mechanisms of diseases, and tissue homeostasis, apoptosis is of great interest in the emerging fields of systems biology. Research into cell death regulation and efforts to model apoptosis processes have become powerful drivers for new technologies to acquire ever more comprehensive information from cells and cell populations. The microfluidic technology promises to integrate and miniaturize many bioanalytical processes, which offers an alternative platform for the analysis of apoptosis. This review aims to highlight the recent developments of microfluidic devices in measuring the hallmarks as well as the dynamic process of cellular apoptosis. The potential capability and an outlook of microfluidic devices for the study of apoptosis are addressed.