171 resultados para Air travel.
Resumo:
A novel catalyst system based on nickel(II) tetraphenylporphyrin (Ni(II)TPP) and methylaluminoxane for styrene polymerization was developed. This catalyst system has a high thermal stability and show fairly good activity. The obtained polystyrene (PS) was isotactic-rich atactic polymer by C-13 NMR analysis, and its molecular weight distribution was rather narrow (M-w/M-n approximate to 1.6, by GPC analysis). ESR revealed that Ni(II)TPP pi cation radicals were formed in the polymerization and could remain in the resulting PS stably. The mechanism of the polymerization was discussed and a special coordination mechanism was proposed. The PS product containing Ni(II)TPP pi cation radicals can be used as a potential functional material.
Resumo:
Air-stable n-type field effect transistors were fabricated with an axially oxygen substituted metal phthalocyanine, tin (IV) phthalocyanine oxide (SnOPc), as active layers. The SnOPc thin films showed highly crystallinity on modified dielectric layer, and the electron field-effect mobility reached 0.44 cm(2) V-1 s(-1). After storage in air for 32 days, the mobility and on/off ratio did not obviously change. The above results also indicated that it is an effective approach of seeking n-type semiconductor by incorporating the appropriate metal connected with electron-withdrawing group into pi-pi conjugated system.
Resumo:
Phthalocyanato tin(IV) dichloride, an axially dichloriniated MPc, is an air-stable high performance n-type organic semiconductor with a field-effect electron mobility of up to 0.30 cm(2) V-1 s(-1). This high mobility together with good device stability and commercial availability makes it a most suitable n-type material for future organic thin-film transistor applications.
Resumo:
In general, the reduction of Eu3+ to Eu2+ in solids needs an annealing Process in a reducing atmosphere. in this paper, it is of great interest and importance to find that the reduction of Eu3+ to Eu2+ can be realized in a series of alkaline-earth metal aluminum silicates MAl2Si2O8 (M = Ca, Sr, Ba) just in air condition. The Eu2+-doped MAl2Si2O8 (M = Ca, Sr, Ba) powder samples were prepared in air atmosphere by Pechini-type sol-gel process. It was found that the strong hand emissions of 4f(6)5d(1)-4f(7) from Eu2+ were observed at 417, 404 and 373 nm in air-annealed CaAl2Si2O8, SrAl2Si2O8 and BaAl2Si2O8, respectively, under ultraviolet excitation although the Eu3+ precursors were employed. In addition, under low-voltage electron beam excitation, Eu2+-doped MAl2Si2O8 also shows strong blue or ultraviolet emission corresponding to 4f(6)5d(1)-4f(7) transition.
Resumo:
Two-dimensional (2-D) gold networks were spontaneously formed at the air-water interface after HAuCl4 reacted with fructose at 90 degrees C in a sealed vessel, in a reaction in which fructose acted as both a reducing and a protecting agent. Through fine-tuning of the molar ratio of HAuCl4 to fructose, the thus-formed 2-D gold networks can be changed from a coalesced pattern to an interconnected pattern. In the coalesced pattern, some well-defined single-crystalline gold plates at the micrometer-scale could be seen, while in the interconnected pattern, many sub-micrometer particles and some irregular gold plates instead of well-defined gold plates appeared. It is also found that the 2-D gold networks in the form of an interconnected pattern can be used as substrates for surface-enhanced Raman scattering (SERS) because of the strong localized electromagnetic field produced by the gaps between the neighboring particles in the 2-D gold networks.
Resumo:
The membraneless biofuel cell (BFC) is facile prepared based on glucose oxidase and laccase as anodic and cathodic catalyst, respectively, by using 1,1'-dicarboxyferrocene as the mediators of both anode and cathode. The BFC can work by taking glucose as fuel in air-saturated solution, in which air serves as the oxidizer of the cathode. More interestingly, the fruit juice containing glucose, e.g. grape, banana or orange juice as the fuels substituting for glucose can make the BFC work. The BFC shows several advantages which have not been reported to our knowledge: (1) it is membraneless BFC which can work with same mediator on both anode and cathode; (2) fruit juice can act as fuels of BFCs substituting for usually used glucose; (3) especially, the orange juice can greatly enhance the power output rather than that of glucose, grape or banana juice. Besides, the facile and simple preparation procedure and easy accessibility of fruit juice as well as air being whenever and everywhere imply that our system has promising potential for the development and practical application of BFCs.
Resumo:
In this paper, we demonstrate the self-assembly of ionic liquids (ILs)-stabilized Pt nanoparticles into two-dimensional (2D) patterned nanostructures at the air-water interface under ambient conditions. Here, ILs are not used as solvents but as mediators by virtue of their pronounced self-organization ability in synthesis of self-assembled, highly organized hybrid Pt nanostructures. It is also found that the morphologies of the 2D patterned nanostructures are directly connected with the quantities of ILs. Due to the special structures of ILs-stabilized Pt nanoparticles, 2D patterned Pt nanostructures can be formed through the pi-pi stack interactions and hydrogen bonds. The resulting 2D patterned Pt nanostructures exhibit good electrocatalytic activity toward oxygen reduction.
Resumo:
In this paper, we report a simple method of fabricating silver and gold nanostructures at the air - water interface, which can be spontaneously assembled through the reduction of AgNO3 and HAuCl4 with ultraviolet (UV) irradiation in the presence of polyacrylic acid (PAA), respectively. It was found that the building blocks in the silver nanostructure are mainly interwoven silver nanofilaments, while those of the gold nanostructure are mainly different sizes of gold nanoparticles and some truncated gold nanoplates, and even coalescence into networks. At the air - water interface, these silver and gold nanostructures can be easily transferred onto the surface of indium tin oxide (ITO) slides and used for electrochemical measurements. After a replacement reaction with H2PdCl4, the silver nanostructure is transformed into a Ag - Pd bimetallic nanostructure, with good electrocatalytic activity for O-2 reduction. The gold nanostructure can also show high electrocatalytic activity to the oxidation of nitric oxide (NO) with a detection limit of about 10 mu M NaNO2 at S/N = 3.
Resumo:
An organic semiconductor that can be mass produced is synthesized by end-capping quaterthiophene with naphthyl units (NaT4). An organic thin-film transistor (OTFT, see figure) has been fabricated using this organic semiconductor, and exhibits stability under ambient conditions with a mobility of up to 0.40 cm(2) V-1 s(-1).
Ambipolar organic field-effect transistors with air stability, high mobility, and balanced transport
Resumo:
Ambipolar organic field-effect transistors (OFETs) based on the organic heterojunction of copper-hexadecafluoro-phthalocyanine (F16CuPc) and 2,5-bis(4-biphenylyl) bithiophene (BP2T) were fabricated. The ambipolar OFETs eliminated the injection barrier for the electrons and holes though symmetrical Au source and drain electrodes were used, and exhibited air stability and balanced ambipolar transport behavior. High field-effect mobilities of 0.04 cm(2)/V s for the holes and 0.036 cm(2)/V s for the electrons were obtained. The capacitance-voltage characteristic of metal-oxide-semiconductor (MOS) diode confirmed that electrons and holes are transported at F16CuPc and BP2T layers, respectively. On this ground, complementary MOS-like inverters comprising two identical ambipolar OFETs were constructed.
Resumo:
The device performances of copper phthalocyanine (CuPc)-based organic thin-film transistors (OTFTs) in main components of air were studied. We found that the device stored in O-2 humidified by water exhibited the changes of electric characteristics including positive-shifted threshold voltage and lower I-on/I-off but unchanged mobility, which was similar to the device exposed to room air. These changes are attributed to O-2 doping to copper phthalocyanine thin film assisted by water. Furthermore, a cross-linked polyvinyl alcohol film was used as encapsulation layer to prevent the permeation of O-2 and water, which resulted in excellent stability even when devices were placed in air for over a year. Therefore, current studies will push the development of OTFTs for practical applications.