191 resultados para Active rest break
Resumo:
An oligomer from 4, 4'-bis(maleimido)diphenyl methane and methylenedianiline were dissolved in active solvent N,N-dimethyl acrylamide in a solid content up to 50-70%; the solution was poured in a sheet-shaped module and irradiated b y Co-60 with the dose from 20 to 350 kGy at room temperature. The polymerized sheet was postcured at 180degreesC to obtain a transparent red-orange sheet with tensile strength above 100 MPa. The glass transition temperature before and after postcuring was around 100degreesC and 150-180degreesC, respectively. Styrene was used along with DMAA to decrease the water absorption for the copolymers.
Resumo:
For the first time horseradish peroxidase (HRP) immobilized on the surface of active carbon powder modified at the surface of a glassy carbon electrode has been shown to undergo a direct quasi-reversible electrochemical reaction. Its formal potential, E-o/, is -0.363 V in phosphate buffer solution (pH 6.8) at a scan rate of 100 mV/s and is almost independent of the scan rate in the range of 50-700 mV/s. The dependence of E-o/ on the pH of the buffer solution indicated that the conversion of HRP-Fe(III)/HRP-Fe(II) is a one-electron-transfer reaction process coupled with one-proton-transfer. The experimental results also demonstrated that the immobilized HRP retained its bioelectrocatalytic activity to the reduction of H2O2. Furthermore, the HRP adsorbed oil the surface of the active carbon powder can be stored at 4 degreesC for several months without any loss of the enzyme activity. The method presented for immobilizing HRP can be easily extended to immobilize and obtain the direct electrochemistry of other enzymes.
Resumo:
It is reported for the first time that horseradish peroxidase (HRP) immobilized on the active carbon can undergo a direct quasi-reversible electrochemical reaction. In addition, the immobilized HRP showed the stable bioelectrocatalytic activity for the reduction of H2O2.
Resumo:
Two typical and important copper-containing enzymes, laccase (Lac) and tyrosinase (Tyr), have been immobilized on the surface of active carbon with simple adsorption method. The cyclic voltammetric results indicated that the active carbon could promote the direct electron transfer of both Lac and Tyr and a pair of well-defined and nearly symmetric redox peaks appeared on the cyclic voltammograms of Lac or Tyr with the formal potential, E-0', independent on the scan rate. The further experimental results showed that the immobilized copper-containing oxidase displayed an excellent electrocatalytic activity to the electrochemical reduction of O-2. The immobilization method presented here has several advantages, such as simplicity, easy to operation and keeping good activity of enzyme etc., and could be further used to study the direct electrochemistry of other redox proteins and enzymes and fabricate the catalysts for biofuel cell.
Resumo:
A series of binuclear neutral nickel and palladium complexes [(XC6H2CH=NC6H3-iPr(2))MRL](2) 4b-f (X=NO2, M=Ni, R=Ph, L=PPh3, 4b; X=H, M=Pd, R=Me, L=PPh3,4c; X=H,M=Pd, R=Me, L=Py, 4d; X=NO2,M=Pd, R=Me, L=PPh3, 4e; X=NO2, M=Pd, R=Me, L=Py, 4f) and [(C10H7CH=NC6H3-iPr(2))MRL](2) 8a-c (M=Ni, R=Ph, L=PPh3, 8a; M=Pd, R=Me, L=PPh3, 8b; M=Pd, R=Me, L=Py, 8c) have been synthesized and characterized. The structures of complexes 4e and 8b have also been confirmed by X-ray crystallographic analysis. With modified methylalummoxane (MMAO) as cocatalysts, these complexes and complex [(C6H3CH=NC6H3-iPr(2))NiPh(PPh3)](2) 4a are capable of catalyzing the addition polymerization of norbomene (NBE) with the high activity up to 2.3 x 10(8) g PNBE/(mol(M) h). The structure of complexes affects considerably catalytic activity towards norbomene polymerization. The polymers obtained with nickel complexes are soluble, while those obtained with palladium complexes are insoluble. Palladium complexes 4c, 4e and 8b bearing PPh3 ligands exhibit much higher activities than the corresponding complexes 4d, M and 8c bearing pyridine ligands under the same conditions.
Resumo:
An experimentally simple and inexpensive catalyst system based on hexabutylguanidinium/ZnBr, has been developed for the coupling of carbon dioxide and epoxides to form cyclic carbonates with significant catalytic activity under mild reaction conditions without using additional organic solvents (e.g. the turnover frequencies (TOF, h(-1)) values as high as 6.6 x 10(3) h(-1) for styrene oxide and 1.01 x 10(4) h(-1) for epichlorohydrin). This catalyst system also offers the advantages of recyclability and reusability. Therefore, it is a very effective, environmentally benign, and simple catalytic process. The special steric and electrophilic characteristics of hexabutylguanidinium bromide ionic liquid result in the prominent performance of this novel catalyst system.
Resumo:
In this paper, an approach for fabricating an active surface-enhanced Raman scattering (SERS) substrate is adopted. This approach is based on the assembling of silver nanoparticles film on gold substrate. Rhodamine 6G (R6G) and p-aminothiophenol (P-ATP) were used as probe molecules for SERS experiments, showing that this new active substrate has sensitivity to SERS response. Tapping-mode atomic force microscopy (AFM) was also used to investigate the surface morphology following the fabricating process of the active SERS substrate, which showed that large quantities of silver nanoparticles were uniformly coated on the substrate.
Resumo:
Reaction of salts of the 2,5-disubstituted amino-p-benzoquinone bridging ligand (la-e) with trans-bis(triphenylphosphane)phenylnickel(II) chloride results in the binuclear complexes 2a-e, which show high activities for ethylene polymerization without any cocatalysts. High-molecular-weight, moderately branched polyethylene of broad molecular-weight distribution was obtained.
Resumo:
beta-Dioxodithioate were produced easily from active methenyl precursors, carbondisulfide and RX with potassium carbonate as base. By a selective basic assistant cleavage of a carbon-carbon bond at the beta-dicarbonyl unit of beta-dioxodithioate and the subsequent alkylation with RX/R'X in situ, single or mixed alpha-oxo ketene dithioacetals were, obtained in good yields.
Resumo:
The Pt/C catalysts were prepared with pine active carbon and Vulcan XC-72 active carbon as the supports. The performances of the Pt/C catalysts in polymer electrolyte membrane fuel cell were compared. The result indicates that the performance of Pt/Vulcan XC-72 is better than that of Pt/pine. The physical and chemical properties of the two active carbons were measured using several analysis techniques. It was found that the pore size, specific conductivity and the surface function group significantly influence the performance of the electrocatalyst.
Resumo:
A novel "bottom-up" approach to highly controllable nanoelectrode ensembles (NEEs) has been developed using colloidal nanoparticle self-assembly techniques. Ibis solution-based strategy allows flexible control over nanoelectrode size, shape, and interspacing of the as-prepared NEEs. Atomic force microscopy (AFM) was proved to be a powerful tool to monitor the NEE topography, which yields parameters that can be used to calculate the fractional nanoelectrode area of the NEEs. AFM, ac impedance, and cyclic voltammetry studies demonstrate that most of nanoelectrodes on the NEEs (at least by 9-min self-assembly) are not diffusionally isolated under conventional ac frequency range and scan rates. As a result, the NEEs behave as "nanoelectrode-patch" assemblies. Besides, the as-prepared NEEs by different self-assembling times show an adjustable sensitivity to heterogeneous electron-transfer kinetics, which may be helpful to sensor applications. Like these NEEs constructed by other techniques, the present NEEs prepared by chemical self-assembly also exhibit the enhancement of electroanalytical detection limit consistent with NEE theory prediction.
Resumo:
Optically active 2,2'-dimethoxy-6,6'-diacetyl-1,1'-binaphthyl (DMDABN) was prepared from 2,2'-dimethoxy-1,1'-binaphthyl, and its structure was comfirmed by elemental analysis, NRM, IR and MS. Optically active polyquinolines were synthesized with DMDABN and 4,4'-diamino-3,3'-dibenzoyldiphenyl ether by Friedlander reaction. These polyquinolines showed high glass transition temperatures (474-578 K), high decomposition temperatures (703-770 K), insolubility in many common organic solvents and strong chiral activity.
Resumo:
3,3'-Dioxo-1.1'(3H.3'H)spirobi[isobenzofuran]-5,6,5',6 acid 1 was resolved successfully and the corresponding optically active polyimides PI were synthesized. The properties of the optically active PI and the racemic one were investigated. The results showed that the specific rotation of(-)-PI was about two times to that of the: (+)-PI, and the regularity of the optically active PI was higher than that of the racemic one.