203 resultados para AQUEOUS TWO-PHASE SYSTEMS
Resumo:
A simple two-dimensional square cavity model is used to study shock attenuating effects of dust suspension in air. The GRP scheme for compressible flows was extended to simulate the fluid dynamics of dilute dust suspensions, employing the conventional two-phase approximation. A planar shock of constant intensity propagated in pure air over Aat ground and diffracted into a square cavity filled with a dusty quiescent suspension. Shock intensities were M-s = 1.30 and M-s = 2.032, dust loading ratios were alpha = 1 and alpha = 5, and particle diameters were d = 1, 10 and 50 mum. It was found that the diffraction patterns in the cavity were decisively attenuated by the dust suspension, particularly for the higher loading ratio. The particle size has a pronounced effect on the flow and wave pattern developed inside the cavity. Wall pressure historics were recorded for each of the three cavity walls, showing a clear attenuating effect of the dust suspension.
Resumo:
The present paper investigates dispersed-phase flow structures of a dust cloud induced by a normal shock wave moving at a constant speed over a flat surface deposited with fine particles. In the shock-fitted coordinates, the general equations of dusty-gas
Resumo:
In order to investigate the influence of the vertical vibration loading on the liquefaction of saturated sand, one dimensional model for the saturated sand with a vertical vibration is presented based on the two phase continuous media theory. The development of the liquefaction and the liquefaction region are analyzed. It is shown that the vertical vibration loading could induce liquefaction. The rate of the liquefaction increases with the increase of the initial limit strain or initial porosity or amplitude and frequency of loading, and increases with the decrease of the permeability or initial modulus. It is shown also that there is a phase lag in the sand column. When the sand permeability distribution is non-uniform, the pore pressure and the strain will rise sharply where the permeability is the smallest, and fracture might be induced. With the development of liquefaction, the strength of the soil foundation becomes smaller and smaller. In the limiting case, landslides or debris flows could occur.
Resumo:
A new type of pulverized-coal combustor, called "Wall-Protecting-Jets Combustor" (hereafter, WPJC has been proposed, designed and studied with both CFD (Computational Fluid Dynamics) and experimental methods. The WPJC is based on a novel concept in which all inlet jets are along the combustor wall. Pilot combustion experiments were conducted to investigate the combustion performance of WPJC. Two-phase flows and pulverized-coal combustion were simulated to study the mechanism of),WPJC using the commercial software FLUENT. The results show that the WPJC has many remarkable advantages: wall-protection by the cold jets without the use of refractory materials; low-temperature and three-stage combustion with low NOx emission; negligible ash/slag-deposition; multiple functions with convenient switching between them; effective adjustment of the combustion intensity and the ignition position.
Resumo:
关于液层的Marangoni-Bénard不稳定性的研究中,现有文献中普遍采用的是单层流模型.本文建立了一种新的两层流模型,采用线性稳定性方法对带有蒸发界面的两层流的Marangoni-Bénard对流不稳定性进行了分析,得到了在不同蒸发量下临界Marangoni数与波数的关系,重点讨论了蒸发速率对汽液两层流系统Marangoni-Bénard不稳定性的影响.
Resumo:
The diffraction and reflection of planar shock wave around a dusty square cavity is investigated numerically, which is embedded in the net bottom surface of a two-dimensional channel, and the induced gas-particle two-phase now. The wave patterns at different times are obtained for three different values of the particle diameter. The computational results show that the existence of particles affects appreciably the shock wave diffraction and cavity flow.
Resumo:
Pulsed fluidization is of considerable interest in process engineering for improving fluidization quality. Quantitative understanding of the pulsed two-phase flow behaviors is very important for proper design and optimum operation of such contactors. The
Resumo:
Liu Qingquan, Singh V.P
Resumo:
An analytical solution to the three-dimensional scattering and diffraction of plane SV-waves by a saturated hemispherical alluvial valley in elastic half-space is obtained by using Fourier-Bessel series expansion technique. The hemispherical alluvial valley with saturated soil deposits is simulated with Biot's dynamic theory for saturated porous media. The following conclusions based on numerical results can be drawn: (1) there are a significant differences in the seismic response simulation between the previous single-phase models and the present two-phase model; (2) the normalized displacements on the free surface of the alluvial valley depend mainly on the incident wave angles, the dimensionless frequency of the incident SV waves and the porosity of sediments; (3) with the increase of the incident angle, the displacement distributions become more complicated; and the displacements on the free surface of the alluvial valley increase as the porosity of sediments increases.
Resumo:
利用非线性分析技术中的分形理论,在长24.73 m、内径0.05 m的小型气液两相流实验装置上对下倾管空气-水段塞流中的液塞频率波动特性进行了研究.结果表明,液塞频率的波动是对初始条件敏感的混沌振荡,遵循分形统计规律,具有持久性.折算液速小时,液塞频率波动的长程相关性随着混合速度的增大而减弱,液塞频率波动对初始条件的敏感程度增强,折算液速较大时则相反.管线倾角越大,液塞频率对初始条件的敏感程度受混合速度的影响越小.折算液速和混合速度均较大时,液塞频率的混沌程度受管线倾角的影响较小.
Resumo:
Niobium-silicide alloys have great potential for high temperature turbine applications. The two-phase Nb/Nb5Si3 in situ composites exhibit a good balance in mechanical properties. Using the 52 in drop tube, the effect of undercooling and rapid solidification on the solidification process and micro-structural characterization of Nb-Si eutectic alloy was studied. The microstructures of the Nb-Si composites were investigated by optics microscope (OM), X-ray diffraction (XRD) and scanning electron microscope (SEM) equipped with X-ray energy dispersive spectrometry (EDS). Up to 480 K, deep undercooling of the Nb-Si eutectic samples was successfully obtained, which corresponds to 25% of the liquidus temperature. Contrasting to the conventional microstructure usually found in the Nb-Si eutectic alloy, the microstructure of the undercooled sample is divided into the fine and coarse regions. The most commonly observed microstructure is Nb+Nb5Si3, and the Nb3Si phase is not be found. The change of coarseness of microstructure is due to different cooling rates during and after recalescence. The large undercooling is sufficient to completely bypass the high temperature phase field.
Resumo:
Since convective boiling or highly subcooled single-phase forced convection in micro-channels is an effective cooling mechanism with a wide range of applications, more experimental and theoretical studies are required to explain and verify the forced convection heat transfer phenomenon in narrow channels. In this experimental study, we model the convective boiling behavior of water with low latent heat substance Freon 113 (R-113), with the purpose of saving power consumption and visualizing experiments. Both heat transfer and pressure drop characteristics were measured in subcooled and saturated concentric narrow gap forced convection boiling. Data were obtained to qualitatively identify the effects of gap size, pressure, flow rate and wall superheat on boiling regimes and the transition between various regimes. Some significant differences from unconfined forced convection boiling were found,and also, the flow patterns in narrow vertical annulus tubes have been studied quantitatively.
Resumo:
To develop low-pollution burners, the effect of a coal concentrator on NO formation in swirling coal combustion is studied using both numerical simulation and experiments. The isothermal gas-particle two-phase velocities and particle concentration in a cold model of swirl burners with and without coal concentrators were measured using the phase Doppler particle anemometer (PDPA). A full two-fluid model of reacting gas-particle flows and coal combustion with an algebraic unified second-order moment (AUSM) turbulence-chemistry model for the turbulent reaction rate of NO formation are used to simulate swirling coal combustion and NO formation with different coal concentrators. The results give the turbulent kinetic energy, particle concentration, temperature and NO concentration in cases of with and without coal concentrators. The predicted results for cold two-phase flows are in good agreement with the PDPA measurement results, showing that the coal concentrator increases the turbulence and particle concentration in the recirculation zone. The combustion modeling results indicate that although the coal concentrator increases the turbulence and combustion temperature, but still can remarkably reduce the NO formation due to creating high coal concentration in the recirculation zone.
Resumo:
An equilibrium equation for the turbulence energy in sediment-laden flows was derived on the basis of solid-liquid two-phase flow theory. The equation was simplified for two-dimensional, uniform, steady and fully developed turbulent hyperconcentrated flows. An energy efficiency coefficient of suspended-load motion was obtained from the turbulence energy equation, which is defined as the ratio of the sediment suspension energy to the turbulence energy of the sediment-laden flows. Laboratory experiments were conducted to investigate the characteristics of energy dissipation in hyperconcentrated flows. A total of 115 experimental runs were carried out, comprising 70 runs with natural sediments and 45 runs with cinder powder. Effects of sediment concentration on sediment suspension energy and flow resistance were analyzed and the relation between the energy efficiency coefficient of suspended-load motion and sediment concentration was established on the basis of experimental data. Furthermore, the characteristics of energy dissipation in hyperconcentrated flows were identified and described. It was found that the high sediment concentration does not increase the energy dissipation; on the contrary, it decreases flow resistance.
Resumo:
The horizontal migration of proppant was numerically investigated with a two-fluid model, in which the interaction between fracturing fluid and proppant, along with that among proppants was taken into account through interphase forces. The migration process and the volumetric concentration of the proppant were examined under various conditions, and the. averaged volumetric concentration of the proppant was obtained. The present research might be useful in the process design of the hydraulic fracturing in the oilfields.