438 resultados para 7140-237
Resumo:
对Egonol龙胆三糖苷及以Egonol衍生物对雌二醇生成活性及其相关机制进行了研究。发现Egonol龙胆三糖苷促雌二醇最高生成率在MCF-7、HepG2、ROS1728中分别为157% 、182.4%、226.8%(以空白组200μg/ml睾酮转换成E2值作为100%生成率)。活性的强弱可能与芳香化酶的组织特异性表达情况一致,说明Egonol龙胆三糖苷促雌二醇活性可能与芳香化酶有关。芳香化酶的组织特异性表达与特异性启动子有关系,Egonol龙胆三糖苷在各组织中皆有促雌二醇活性,说明该化合物不是通过调节该酶的基因表达而起作用。 在探究Egonol龙胆三糖苷及其衍生物是否介导cAMP-PKA途径从而影响芳香化酶的表达中,发现该系列化合物在HEK-293T细胞中对cAMP的影响非常弱小。在人HepG2细胞中显示了极强的提高cAMP的作用。而化合物对cAMP的作用与其促雌二醇活性强弱不呈正相关关系,对c AMP-PKA途径的激活可能与胞内雌激素有关。 Egonol龙胆三糖苷及其衍生物对HepG2细胞增殖影响显示,该系列化合物同雌二醇一样有相似的较弱促HepG2细胞增殖作用。而且存在一定剂量依赖性。在瞬时转染有ERE(雌激素作用元件)的HepG2中,Egonol龙胆三糖苷及其衍生物也显示了类似于雌二醇与ERE结合的作用,进一步提示Egonol龙胆三糖苷及其衍生物在HepG2细胞中具备雌激素样作用。 为研究Egonol龙胆三糖苷及其衍生物是否可能直接提高芳香化酶的活性,我们计划将芳香化酶从芳香化酶阳性细胞中克隆后表达到芳香化酶阴性的细胞中。在MCF-7细胞中以Oligo dT为引物合成的cDNA模板,和在ROS1728细胞中以Oligo dT及大鼠引物F链为引物合成的cDNA模板能成功扩增出与芳香化酶全长编码序列大小一致的片段。 Egonol衍生物在HepG2、ROS1728细胞中促雌二醇活性的实验表明,Egonol苯环上引入其它基团可以提高Egonol的活性。 从雌激素经典的基因组效应和非基因组效应两方面对雌激素信号转导研究进展进行了简单的综述。 The promoting effects of egonol gentiotrioside and egonol derivatives on the synthesis of estrogen E2 were studied. In vitro test, egonol gentiotrioside promoted the synthesis of estrogen E2 in MCF-7, HepG2,ROS1728 cell lines with mean yields of estrogen E2 57%,82.4% and 126.8%, higher than those of blank control at a concentration of 100 mg/ml. The difference of estrogen E2 synthesis promoting effects among the cell lines suggested tissue specificity. It is in accordance with tissue specific character of aromatase expression. The evidence implied that effect of egonol gentiotrioside on promoting the synthesis of estrogen E2 was related to the aromatase. Different expression levels of aromatase in different tissues are attributed to their specific promoters, but egonol gentiotrioside can promote the synthesis of estrogen E2, in many tissues,so the fact is controversary to the estimation that this compound regulates the aromatase on gene level. In order to investigate whether egonol gentiotrioside and its synthetic derivatives regulates aromatase activity through the cAMP-PKA signal pathway,we transfected the p CRE-Luc luciferase reporter gene into the HEK-293T cells and HepG2 cells. These compounds had weak activity in promoting the cAMP activity in HEK-293T cells but strong in HepG2 cells.The compounds’effect of promoting the cAMP may be related to their estrogenic activity in cells. The modified HepG2 cell proliferation assay was used to evaluate the estrogenic activity of egonol gentiotrioside and its derivatives. The weak estrogenic activity of egonol gentiotrioside and its derivatives at various concentrations expressed as proliferative effect relative to that of blank control was examined. We transfected the pERE-Luc luciferase reporter gene into the HepG2 cells. These compounds possessed significant activity on estrogen response element compared with the one treated with 10 n M estrogen E2. This evidence indicated that the estrogenic activity of egonol gentiotrioside and its derivatives. In order to investigate whether the egonol gentiotrioside and its derivatives can upregulate the activity of aromatase directly, The full-length of P450 aromatase cDNA encoding aromatase were amplified by using primer Oligo dT in MCF-7,and specific primer in ROS1728,respectively. The structure-activity relationship of Egonol in promoting the synthesis of E2 in HepG2 and ROS1728 cells indicated that introduction of some group on the basic sketon of egonol could improve the effect. The progress in research of signal pathway of estrogen in recent years was summarized.
Resumo:
干扰素(IFNs)是最早发现的具有广泛用途的一类细胞因子,IFN-α通过JAK/STAT信号途径调控机体一系列生理和病理反应。至今尚未发现类干扰素的小分子。我们前期研究发现天然产物毛蕊异黄酮可激活干扰素诱导的JAK/STAT信号途径。为发现类干扰素小分子、获得小分子探针,本课题拟建立成熟的JAK/STAT信号途径的筛选模型,合成毛蕊异黄酮及其类似物,研究这些化合物的构效关系,进而尝试通过共价键标记生物素或香豆素来直接研究它们与相关受体的作用。 从异香草醛出发经7步合成反应得到了毛蕊异黄酮。采用平行合成策略得到异黄酮类化合物;采用分支式合成策略,以取代苯乙酸作为合成砌块,获得具有与异黄酮类似结构的香豆素、3-芳基喹诺酮。与分离得到的黄酮类化合物,构建了一个包括异黄酮、黄酮、香豆素、3-芳基喹诺酮在内的化合物库。 建立了包含IFN-α刺激反应元件 (ISRE)的荧光素酶报告基因体系,通过筛选化合物库中的化合物,发现异黄酮骨架为激活JAK/STAT信号途径必须结构、毛蕊异黄酮7-位酚羟基被取代后活性丧失。根据以上结果,对毛蕊异黄酮3′-位标记物的合成进行了初步尝试。 发现山茱萸科植物青荚叶(Helwingia japonica (Thunb.) Dietr.)有抑制蛋白酪氨酸磷酸酯酶1B(PTP1B)的活性。从其地上部分95%乙醇提取物的乙酸乙酯部分分离得到5个化合物,应用波谱方法及与已知品对照的手段鉴定它们为p-menth-2-en-1β, 4β, 8-triol (Z-1)、blumenol A (Z-2)、2′,3′,4′,5′,6′-五羟基查尔酮(Z-3)、洋芹素7-O-β-D-吡喃葡萄糖苷(Z-4)、木犀草素7-O-β-D-吡喃葡萄糖苷(Z-5). Interferons (IFNs) are one kind of cytokines with broad functions. IFN-α mediates series physiological and pathological changes of human body via JAK/STAT pathway. Untill now, no IFNs-like small molecules are discovered. In our preliminary experiment, the natural product calycosin has been observed to activate JAK/STAT pathway. Therefore, we establish a luciferase reporter gene system and synthesize calycosin and its analogues to reveal their structure-activity relationship (SAR). Besides, in order to prove that calycosin activates JAK/STAT pathway through IFN receptor, we attempted to tag it with biotin or coumarin by covalent bonding. Calycosin was synthesized from isovanillin via seven steps. Other isoflavones were obtained by parallel synthesis; coumarins and quinolones were prepared through divergent synthesis, using substituted phenylacetic acids as building blocks. Combing with natural flavones, a small molecule library was established. A luciferase reporter gene system, consisting of 5 copies of the ISRE (interferon-stimulated response element), was used for screening of small molecules from that library. We found that the core-structure of isoflavone was necessary, and if the 7-OH is substituted, the activity slumps. According to our observation, we tried to tag biotin or coumarin at 3′-OH of calycosin. The 95% ethanol extract of the aerial parts of Helwingia japonica (Thunb.) Dietr. showed protein tyrosine phosphatase 1B (PTP1B) inhibitory activity. Five compounds were isolated. On the basis of spectral data or by comparison with authentic samples, they were identified as p-menth-2-en-1β,4β,8-triol (1), blumenol A (2), 2′,3′,4′,5′,6′-pentahydroxychalcone (3), apigenin 7-O-β-D-glucopyranoside (4), and luteolin 7-O-β-D-glucopyranoside (5).
Resumo:
细胞生物学研究的一个重要方向是动态地控制细胞在基底上的黏附。最近,随着表面化学的研究深入,尤其是对烷基硫醇在金基底上形成自组装单层膜(self-assembled monolayers, SAMs)这一体系的研究,使得人们能在分子水平的表面上控制细胞黏附。精氨酸-甘氨酸-天冬氨酸(arginine-glycine-aspartate, RGD)序列首先是从细胞外基质蛋白中分离出来的,能够识别并非共价结合细胞膜表面的整合素受体,从而促进细胞黏附。以前的一些工作已经证实,将含有RGD的肽链连接到SAMs表面之后,能够生物特异性地黏附动物细胞。已有的手段比如光照、电压、加热、微电极、微流控以及表面纳米形貌的梯度变化,都不能真正实现可逆地控制细胞黏附,原因是这些方法所用的化学有限;这些方法也不能得到完全抗拒细胞黏附的表面,原因是这些方法产生的表面缺陷等不完整。用两种不同波长的光(紫外光和可见光)照射偶氮苯,偶氮苯会发生可逆的光致异构变化,因此,偶氮苯的光致异构性质可以用来可逆地控制细胞在表面黏附。运用含有偶氮苯的混合SAMs,偶氮苯的末端连接GRGDS肽,混合SAMs中是以末端为六聚乙二醇的硫醇为背景,该SAMs修饰而成的表面能够黏附或者抗拒细胞黏附,其表面黏附性质取决于SAMs中偶氮苯的构象。该方法提供了一种在分子水平的表面上我们所了解到的唯一能可逆控制细胞黏附的方法,该方法需要用到的光源来自于标准荧光显微镜所配置的汞灯。 为了实现在金基底表面可逆的控制细胞黏附,我们合成了如下三个化合物: 由于化合物1的溶解性很差,几乎在所有溶剂里都不溶,所以不能直接用化合物1制备SAMs;化合物2能高效地抗拒细胞的黏附;化合物3的偶氮苯末端是活化酯,能够连接GRGDS肽,从而控制细胞黏附。 将化合物2和化合物3以一定的比例均匀混合在金基底表面形成SAMs,然后将GRGDS肽连接到偶氮苯(反式)的末端(通过GRGDS肽的甘氨酸上的伯胺基与偶氮苯末端的活化酯反应),从而得到细胞黏附的表面。用紫外光照射该细胞黏附表面5-10小时,随着偶氮苯的构象由反式变为顺式,偶氮苯末端的GRGDS肽淹没在化合物2的六聚乙二醇中,得到抗拒细胞黏附的惰性表面。再用可见光照射该惰性表面1个小时,随着偶氮苯的构象由顺式变为反式,原先埋没在六聚乙二醇中的GRGDS肽伸展至单层膜的末端,又得到了细胞黏附的表面。因此,该表面能完全可逆地控制细胞在金表面黏附。 An important area in cell biology is the dynamic control of cell adhesion on substrates. Recent advancements in surface chemistry, in particular, self-assembled monolayers (SAMs) of alkanethiols on gold substrates, have permitted unprecedented control of cell adhesion via molecularly defined surfaces. The tri-peptide sequence arginine-glycine-aspartate (RGD), initially isolated from the extracellular matrix (ECM) proteins, can recognize and non-covalently bind with integrin receptors on cell membranes to promote cell adhesion. Some previous work has demonstrated that RGD peptide grafted on SAMs can allow bio-specific adhesion of mammalian cells that mimic natural adhesion. Existing technologies such as light, voltage, heat, microelectrodes, microfluidic systems and surface gradient of nanotopography, either cannot realize fully reversible control of cell adhesion, due to the limitation in the chemistry used, or cannot yield a surface completely resistant against cell adhesion, due to the imperfection of surfaces. Azobenzenes undergo reversible photo-induced isomerization rapidly at two different wavelengths of light (UV and visible light), it therefore potentially allows the reversible control of cell adhesion on a surface. By using a mixed SAMs presenting azobenzene groups terminated in GRGDS peptides in a background of hexa(ethylene glycol) groups, the surface can either accommodate or resist cell adhesion depending on the conformation of the azobenzene embedded in SAMs. This method provides the only means we know to control cell adhesion reversibly on a molecularly well-defined surface by using light generated by a mercury lamp equipped on standard fluorescence microscopes. To realize the reversible control of cell adhesion on gold surface, we synthesized three kinds of compounds as following, We found that it was difficult to obtain SAMs directly from compound 1 because of its poor solubility in almost all kinds of solvents; compound 2 can resist cell adhesion efficiently; compound 3 presents an azobenzene terminated with NHS-activated ester, which can couple with a GRGDS peptide to control cell adhesion. After coating a gold surface with compound 2 and 3 in appropriate ratios to form a SAM followed by coupling the GRGDS peptides with NHS-activated esters at the end of azobenzene (E configuration) resulted in a cell-adhesive SAM. Irradiating this cell-adhesive SAM with UV light for 5-10 h converted the E configuration of azobenzene into the Z form, the GRGDS peptides becoming masked in the PEG, resulting in a cell-resistant surface. These SAM could again support cell adhesion as a result of the conformational switch of azobenzene from Z to E with the irradiation of visible light for 1 h. This surface, therefore, allows completely reversible control of cell adhesion on a gold surface.
Resumo:
手性胺是合成天然产物和手性药物的重要中间体,亚胺和烯胺的不对称催化还原是制备手性胺最直接有效的方式之一。手性有机小分子催化的亚胺不对称还原已取得了可喜的进展,但到目前为止,有机小分子催化的烯胺不对称还原,尤其是环状烯胺的不对称还原还少有报道。 本研究从手性叔丁基亚磺酰胺出发,设计并合成了一系列含有叔丁基亚磺酰基的新型脲类及硫脲类催化剂,并将其用于催化三氯硅烷对烯胺的不对称还原,尤其是1, 4-二氢吡啶酯类环状烯胺的不对称还原。通过对催化反应条件的优化,发现当添加1eq H2O时,反应收率和对映选择性明显提高,获得高达99% 的收率和88% ee,同时也取得了很好的非对映选择性(dr = 8:92)。首次实现了三氯硅烷对1, 4-二氢吡啶酯类环状烯胺的高立体选择性还原。 通过机理方面的研究,我们推测反应过程中可能是:首先,底物1, 4-二氢吡啶酯与催化剂形成氢键而被活化,当加入添加剂后,添加剂与三氯硅烷反应释放出一个质子,然后受活化的1, 4-二氢吡啶酯捕获该质子转变成更活泼的亚胺正离子的中间体。随后,在催化剂上的手性硫氧的活化下,三氯硅烷的负氢加成到受活化的亚胺正离子的中间体上,最后生成比较有利的反式产物1, 4, 5, 6-四氢吡啶乙酯。 Calalytic enantioselective reduction of imines and enamines represents one of the most straightforward and efficient methods for the preparation of chiral amines, which is an important class of intermediates for the synthesis of natural products and chiral drugs. Significant progresses have been made in organocatalytic enantioselective reduction of imines. However, asymmetric reduction of enamines, especially of cyclic enamines catalyzed by small organocatalysts has scarcely been reported. In this study, starting from chiral tert-butanesulfinamide, a series of structurally simple tert-butanesulfinyl urea and thiourea organocatalysts were developed and employed in asymmetric reduction of enamines by triclorosilane, particularly in the reduction of cyclic enamines such as Hantzsch 1, 4-dihydropyridines. During the optimization of reaction condictions, we found that the addition of one equivalent of H2O could significantly improve the yields and enatioselectivities. Under optimal condictions, 99% yield, up to 88% ee, and 8:92 diastereomeric ratio were obtained. Thus, we have for the first time realized the highly stereoselective reduction of Hantzsch 1, 4-dihydropyridines catalyzed by triclorosilane. As for the mechanism, we speculate that the Hantzsch 1, 4-dihydropyridine was firstly engaged with the catalyst through hydrogen bond. The proton released from the reaction of the additive and triclorosilane next added to one of the C=C bond to make an active iminium intermediate, which was then attacked by the nucleophlic hydrogen of HSiCl3 activated by the Lewis basic sulfinyl function of the catalyst to provide superior trans-1, 4, 5, 6-tetrahydropyridine products.
Resumo:
链霉菌是十分重要的一类放线菌,绝大多数的抗生素都由该类细菌产生。毛壳属真菌是一类重要的丝状真菌,从中也发现有很多结构新颖、活性独特的活性物质。因此本论文对两株链霉菌的活性成分及一株金毛壳菌的次生代谢产物进行了研究。 1.从吸水链霉菌(Streptomyces hygroscopicus 1.358)液态发酵产物(乙酸乙酯提取物)中分离得到3个化合物,通过波谱方法鉴定为RK955A (1)、Nigericin(2)、Elaiophylin(3)。以青霉素耐药-金黄色葡萄球菌作为指示菌的抗菌活性测定表明,三者均具有较强抗菌活性。 2.通过抗肿瘤体外活性筛选模型筛选得到得到一株链霉属土壤放线菌,从中分离得到六个化合物:苯乙酰胺(4)、苯丙酰胺(5)、肉桂酰胺(6)、3-(N-(甲酰胺基)乙酰基)吲哚(7)、鸟苷磷酸(8)、鸟苷(9)。 3.从金色毛壳菌(Chaetomium aureus)的固态培养物中分离得到13个化合物,利用波谱方法将其鉴定为:金毛壳菌素A(10)、金毛壳菌素B(11)、Eugenetin(12)、Eugenitol(13)、Chaetoquadrin A(14)、Chaetoquadrin B(15)、Chaetoquadrin G(16)、Chaetoquadrin H(17)、Chaetochromin A(18)、Sterigmatocystin(19)、O-methylsterigmatocystin(20)、3β-羟基-麦角甾-5,7,22-三烯(21)和过氧麦角甾醇(22)。 4.综述了聚醚类抗生素的结构、生物合成、生物活性及作用机理。 The genus Streptomyces (Actinomycetes) is an important group of microbe. Most antibiotics known nowdays are discovered from species of Streptomyces. The fungi of the genus Chaetomium have attracted much attention because various kinds of secondary metabolites with diverse bioactivities have been found from them. Thus, the bioactive compounds from two strains of Streptomyces and the secondary metabolites of Chaetomium aureus were investigated. 1. Three compounds were isolated from the ethyl acetate extract of the fermentation broth of Streptomyces hygroscopicus. They are identified to be elaiophylin (1), nigericin (2), and antibiotic RK955A (3) on the basis of their spectroscopic data. Compounds 1-3 possess antibacterial activities against Staphyloccocus aureus. 2. It was found that the extract of the fermented broth of a strain of Actinomycetes could inhibit some tumor cel lines. Separation of the bioactive fraction led to the isolation of six compounds. They were characterized to be phenylacetamide (4), phenylpropylamide (5), trans-cinnamamide (6), 3- (N- (formylmethyl) acetamide) indole (7), guanylicacid (8), and guanosine (9). 3. From the fermented broth of Chaetomium aureus, 13 compounds were isolated for the first time. They were determined to be chaetomiumycin A (10), chaetomiumycin B (11), eugenetin (12), eugenitol (13), chaetoquadrin A (14), chaetoquadrin B (15), chaetoquadrin G (16), chaetoquadrin H (17), chaetochromin A (18), sterigmatocystin (19), O-methylsterigmatocystin (20), 3β-hydroxyergosta-5, 7, 22-triene (21) and peroxy-ergosterol (22). Compounds 10 and 11 are new ones. 4. Structure, biosynthesis, biological activity, and mechanisms of polyether antibiotics were reviewed.
Resumo:
本论文由三章组成。第一章阐述了藏药水菖蒲的化学成分研究,共分离鉴定了39个化学成分,其中6个为新化合物。第二章报道了几种忍冬属植物的HPLC、HPLC-MS、GC分析以及抑菌活性、重金属含量测定结果。第三章概述了菖蒲属植物的研究进展。 第一章报道了水菖蒲(Acorus calamus L.)化学成分的分离纯化与结构鉴定。采用正、反相硅胶柱层析等分离方法,从水菖蒲的根中共分离出41个化合物,通过红外、质谱、核磁共振及X-ray单晶衍射等波谱方法和模拟计算方法鉴定了其中39个化合物的结构,主要为倍半萜、苯丙素、甾体类化合物。其中含有5个新的倍半萜类化合物和1系列新的甾体皂苷衍生物。经波谱分析将它们的结构鉴定为 1b, 7a(H)-cadinane-4a, 6a, 10a-triol (1), (2R,6R,7S,9S)-1(10), 4-cadinadiene-2, 9-diol (2), 1a, 5b-guaiane-10a-O-ethyl-4b, 6b-diol (7), 6b, 7b(H)-cadinane-1a, 4a, 10a-triol (13),(1R,4R,6S,10R)-1-hydroxy-7(11)-cadinen-5, 8-dione (14), 4′-O-正n碳酰基-3-O- β-D-葡萄糖基谷甾醇(n=14, 16, 18, 22) (15)。 第二章包括四个部分。第一部分报道了忍冬属三种植物40个样品的HPLC测定和对主要活性成分绿原酸的定量分析结果,以及运用HPLC-MS技术对色谱图中8个峰进行指认。在此基础上,考察了种植和采收多个因素对绿原酸含量的影响。第二部分报道了忍冬属三种植物27个样品的GC分析,根据样品的挥发性成分的保留时间对不同样品进行了定性比较,并考察了花期及海拔高度对植物挥发性成分的影响。第三、四部分分别阐述了灰毡毛忍冬和红腺忍冬的体外抑菌活性研究和重金属含量测定结果。 第三章全面系统地概述了菖蒲属植物的化学成分和药理活性研究进展。 This dissertation is composed by three chapters. The first chapter elaborates the phytochemical investigation of Acorus calamus L. Thirty-nine compounds including six new compounds were isolated and identified. The second chapter reports the research on genus Lonicera by HPLC, HPLC-MS and GC. Antifungal activity and heavy metals measurement of genus Lonicera were reported. The third chapter is a review about the research progress on the plant family of Acorus. The first chapter focuses on the isolation and identification of chemical constituents from Acorus calamus L.. Forty-one compounds were isolated from the root of Acorus calamus L. by repeat column chromatography over normal and reversed phase silica gel, the structure of thirty-nine compounds was identified by spectroscopic methods and computational methods, including IR, MS, NMR and X-ray. Those compounds mainly belonged to sesquiterpene, phenylpropanoid and steroid. Among them, five are new sesquiterpenes and one series are new steroid glycoside derivatives. Their structure were suggested as 1b, 7a(H)-cadinane-4a, 6a, 10a-triol (1), (2R,6R,7S,9S)-1(10), 4-cadinadiene-2, 9-diol (2), 1a, 5b-guaiane-10a-O-ethyl-4b, 6b- diol (7), 6b, 7b(H)-cadinane-1a, 4a, 10a-triol (13), (1R,4R,6S,10R)-1-hydroxy-7(11)- cadinen-5, 8-dione (14), 4′-O-carbonyl-3-O-β-D-glucosyl-sitosterol (carbonyl = tetradecanoyl, hexadecanoyl, octadecyl, docosanoyl) (15). The second chapter consists of four parts. The first part reports the HPLC analysis of forty samples of the genus Lonicera, and the quantitative investigation of chlorogenic acid in these samples by HPLC analysis. Relationship between the content of chlorogenic acid in different samples and their planting conditions and harvesting time were discussed. Furthermore, eight compounds were identified or tentatively characterized based on their mass spectra and UV spectra profiles. The second part is about qualitative analysis of the volatile constituent in twenty-seven samples of genus Lonicera by GC. The effect of planting altitude and harvesting time on the volatile constituent was also investigated. The third and fourth parts describe the antifungal activity and content of some kinds of heavy metals of L. macranthoides Hand.-Mazz. and L. hypoglauca Miq.. The third chaspter is a review about the research progress of the plant family of Acorus.
Resumo:
本学位论文报道了作为传统藏药材广泛使用的西藏产雪莲花化学成分的研究。论文由五章组成,第一章是三种西藏产雪莲花的化学成分的系统分离纯化和结构鉴定;第二章为西藏产雪莲花化学成分的液-质及串联质谱联用分析;第三章提出了以HPLC和TLC为检测方法的雪莲花药材质量标准草案;第四章给出了对西藏产雪莲花挥发油化学成分的气-质联用分析结果;第五章概述了雪莲花的化学成分及药理研究进展。 第一章包括三个部分。第一部分报道了绵头雪莲花(Saussurea laniceps Hand.-Mazz.)全草乙醇提取物化学成分的分离鉴定。采用正相硅胶柱层析及凝胶柱层析等分离方法,从西藏产绵头雪莲花的乙醇提取物中共分离鉴定出15个化合物。其中11个化合物为首次从该植物中分离得到,当中2个化合物系在凤毛菊属植物中首次发现。第二部分报道了水母雪莲花(Saussurea medusa Maxim.)全草乙醇提取物的化学成分。采用正、反相硅胶柱层析及凝胶柱层析等分离方法,共分离鉴定出15个化合物,其中1个为新化合物,另有4个化合物为首次从该植物中分离得到。新化合物结构通过质谱和一维及二维核磁共振等波谱解析方法及碱水解反应确定为巴豆酰基-高车前苷(M-7)。第三部分报道了三指雪莲花 (Saussurea tridactyla Sch.-Bip. ex Hook. f.)全草乙醇提取物的化学成分。采用正相硅胶柱层析及凝胶柱层析等分离方法,共分离鉴定出7个化合物,其中1个化合物为首次从该植物中分离得到。 第二章也包括三个部分。首先是采用液-质联用(HPLC-DAD-ESI-MSn)分析方法,对7个西藏不同产地的三指雪莲花化学成分进行了分析,通过与标准品的 UV和MS数据比较,共鉴定出14个峰,并对其中8个共有成分进行了定量测定。其次是关于八种西藏产雪莲花化学成分的液-质联用(HPLC-DAD-ESI-MSn)分析,通过与标准品的UV和MS数据比较,共鉴定出15个峰,并对其中8个共有成分进行了定量检测。最后通过对八种西藏产雪莲花主要化学成分的多级串联质谱(ESI-MSn)分析,快速、灵敏地鉴定出10个黄酮和3个香豆素化学成分。 第三章同样包括三个部分。首先是以绵头雪莲花中主要香豆素成分东莨菪素和伞形花内酯为对照品,通过TLC定性检测和HPLC含量测定,草拟出较严谨的药材质量标准。其次是将绵头雪莲花、三指雪莲花和雪兔子作为一个药材看待,草拟了以东莨菪素和伞形花内酯的TLC检测为指标的药材质量标准。最后是针对水母雪莲花,以主要黄酮成分芹菜素-7-O-b-D-葡萄糖苷为对照品作TLC检测,并草拟出该药材的质量标准草案。 第四章报道了西藏产雪莲花挥发油的化学成分分析。采用传统水蒸气蒸馏法分别从八种雪莲花全草中提取挥发油,利用气相色谱-质谱联用技术分别从水母雪莲花、绵头雪莲花、槲叶雪莲花、云状雪兔子、拉萨雪兔子、小果雪兔子、雪兔子和三指雪莲花中分别鉴定出83、83、56、34、21、20、24和20个化学成分,分别占其挥发油总量的70.7%、76.0%、82.2%、55.4%、49.7%、70.4 %、76.2%和 76.7%。 第五章为综述,总结和概括了雪莲花的化学和药理研究进展。 The dissertation reports the investigation of the chemical constituents of the genus Saussurea. Quite a lot of species in this genus are traditional Tibetan medicinal plants, and hence have been widely used in traditional Tibetan medicine. This dissertation consisted of five chapters. The first chapter is on the chemical constituents of three Saussurea plants. The second section is about the analysis of chemical constituents of Saussurea plants using HPLC-MS and ESI-MS/MS. In the third chapter, we proposed quality-control standards for the Genus Saussurea based on TLC (thin layer chromatography) and HPLC. The fourth chapter is about chemical compositions of the essential oil from the whole plant of Saussurea plants. The last chapter reviews the research progress of the Genus Saussurea. The first chapter consists of three parts. The first part is about chemical constituents of ethanol extracts from whole plant of Saussurea laniceps Hand.-Mazz. Fifteen compounds were isolated by column chromatography on normal phase silica gel and Sephadex LH-20. Among them, eleven compounds were isolated from this plant for the first time, and two compounds were isolated from Genus Saussurea for the first time. The second part is about chemical constituents of ethanol extracts from whole plant of Saussurea medusa Maxim. Fifteen compounds were isolated by column chromatography on normal phase, reversed phase silica gel and Sephadex LH-20. Five of them were isolated from this plant for the first time, and there is one new flavonoid glucoside which was identified as 6″-O-crotonoyl-homoplantaginin (M-7) based on the evidence of one- and two-dimensional nuclear magnetic resonance, mass spectrometry analysis, and alkaline hydrolysis reaction. The last part is about chemical constituents of ethanol extracts from whole plant of Saussurea tridactyla Sch.-Bip. ex Hook. f.. Seven compounds were isolated by column chromatography on normal phase silica gel and Sephadex LH-20. There is one compound which was isolated from this plant for the first time. The second chapter consists of three parts. In the first part, we analyzed the chemical constituents of S. tridactyla collected from seven different places in Tibet using HPLC-DAD-ESI-MSn. Fourteen peaks in the HPLC were identified by comparison of UV and MS spectra with those of authentic compounds, among which eight common peaks were quantified. In the second part, we analyzed the chemical constituents of eight Saussurea species using HPLC-DAD-ESI-MSn method. Fifteen peaks in the HPLC were identified by comparison of UV and MS spectra with those of authentic compounds and eight main peaks of them were quantified. In the last part, we analyzed the chemical compounds of the above eight Saussurea plants directly by ESI-MS/MS. Thirteen major compounds, including 10 flavonoids and 3 coumarins were easily rapidly identified. The third chapter consists of three parts. In the first part, we proposed a comparative high quality-control standard for S. laniceps, based on quality detection by TLC and quantity analysis by HPLC using two major compounds (umbelliferone and scopoletin) as standard compounds. In the second part, in viewing S. laniceps, S. tridactyla and S. gossypiphora as the members of one family of medicinal herbs, we suggested a quality-control standard based on the TLC detection of the two major compounds (umbelliferone and scopoletin). In the last part, we proposed a quality-control standard for S. medusa based on the TLC detection of its major component (apigenin 7-O-glucoside). The four chapter analyzed the chemical constituents of essential oil of eight Saussurea species. The essential oils were extracted from the whole plants of these samples with water stream distillation. By GC-MS analysis, we identified eighty-three compounds from S. medusa, eighty-three from S. laniceps, fifty-six from S. quercifolia, thirty-four from S. aster, twenty-one from S. kingii, twenty from S. simpsoniana, twenty-four from S. gossypiphora, and twenty from S. tridactyla respetively, which accounted for 70.7%, 76.0%, 82.2%, 55.4%, 49.7%, 70.4 %, 76.2% and 76.7% of the total essential oil, respectively. The last chapter reviews the research progress of the Genus Saussurea.
Resumo:
本论文对四川蜡瓣花 (Corylopsis willmottiae Rehd. et Wils.)、密花樫木[Dysoxylum densiflorum (Blume) Miq.]、四川溲疏 (Deutzia setchuenensis Franch)及云南豆腐柴 (Premna yunnanensis W. W. Smith)的化学成分进行了研究。通过色谱分离得到44个化合物。主要基于波谱数据鉴定了它们的结构,其中1个为新化合物。 1.从四川蜡瓣花全株的95%乙醇提取物中共分离鉴定了13个化合物,它们是:1-O-(3-O-甲基没食子酸)-岩白菜素(1)、11-O-没食子酰基岩白菜素(2)、 11-O-紫丁香基岩白菜素(3) 、岩白菜素(4)、4-O-没食子酰基岩白菜素(5) 、4,11-O-二没食子酰基岩白菜素 (6)[14]、β-谷甾醇 (7)、acetyl aleuritolic acid (8)、(-)-表没食子儿茶素没食子酸酯(9)、对羟基苯甲酮 (10)、 11-香豆酸酰岩白菜素 (11)[19]、丁香酸 (12)和没食子酸 (13)。其中1为新化合物。 2.从密花樫木根的95%乙醇提取物中共分离纯化了13个化合物,它们是:β-白檀酮(14)、richenone (15)、β-谷甾醇 (7)、cabraleadiol (16)、β-香树脂醇 (17)、龙脑香醇酮 (18)、cabraleadiol monoacetate (19)、cabraleone (20)、3β-hydroxy-5 -pregnen-20-one (21)、3β-hydroxy-5α-pregnan-20-one (22)、cabraleahydroxylactone (23)、川楝子甾醇B (24)、表儿茶素 (25)。 3.从四川溲疏全株95%乙醇提取物中共分离11个化合物,鉴定了其中的9个化合物。它们是:β-谷甾醇 (7)、白桦酯醇(26)、齐墩果酸(27)、hydrangetin (28)、肉桂酸 (29),齐墩果酸-3-O-β-D-吡喃葡萄糖醛酸苷(30)、β-胡萝卜苷 (31)、齐墩果酸-3-O-(β-D-吡喃葡萄糖醛酸-6-正丁酯)(32)、齐墩果酸-3-O-β-D-吡喃葡萄糖醛酸-28-O-β-D-吡喃葡萄糖苷 (33)。 4.从云南豆腐柴95%乙醇提取物中分离得到12个化合物,分别为白桦脂醇 (25)、7-羟基黄烷酮 (34)、松属素 (35)、2’,4’-羟基查儿酮 (36)、高良姜素-3-甲醚 (37) 、高良姜素-3,7-二甲醚 (38)、异甘草素-4-甲醚 (39)、豆蔻明 (40)、乔松酮 (41)、异甘草素 (42)、arjunolic acid (43)、槲皮素3-O-β-D-木糖苷(44)。 5.综述了1976年以来樫木属植物化学成分和活性研究的概况。 Phytochemical investigation on Corylopsis willmottiae, Dysoxylum densiflorum, Deutzia setchuenensis, and Premna yunnanensis, led to the isolation of 44 compounds, 1 of which was new one. 1. One new compound was isolated from 95% ehanolic extrat of the whole plants of C. willmottiae, identified as 11-O-(3-O-methylgalloyl)-bergenin (1). The twelve known compounds isolated were 11-O-galloylbergenin (2), 11-O-syringylbergenin (3), bergenin (4), 4-O-galloylbergenin (5), 4,11-di-O-galloylbergenin (6), β-sitosterol (7), acetyl aleuritolic acid (8), (-)-epigallocatechin 3-O-gallate (9), 1-(4-hydroxyphenyl) ethanone (10), 11-O-coumaroylbergenin (11), syringic acid (12), gallic acid (13). 2. Thirteen compounds were isolated from 95% ethanol extract from the roots of D. densiflorum and identified as β-amyrenone (14), richenone (15), β-sitosterol (7), cabraleadiol (16), β-amyrin (17), hydroxydammarenone-Ⅱ (18), cabraleadiol monoacetate (19), cabraleone (20), 3β-hydroxy-5-pregnen-20-one (21), 3β-hydroxy-5α-pregnan-20-one (22), cabraleahydroxylactone (23), toosendansterol B (24) and (-)-epicatechin (25). 3. Eleven compounds were isolated from ethanol extract of D. Setchuenensis. Nine were identified as β-sitosterol (7), betulin (26), oleanolic acid (27), hydrangetin (28), cinnamic acid (29), oleanolic acid 3-O-β-D-glucuronopyranoside (30), β-daucosterol (31), oleanolic acid 3-O-β-D-glucuronopyranoside-6-O-butyl ester)(32), oleanolic acid 3-O-β-D-glucuronopyranosyl-28-3-O-β-D-glucopyranoside (33). 4. Twelve compounds were isolated from ethanol extract of P. yunnanensis and identified as betulin (26), 7-hydroxyflavanone (34), pinocembrin (35), 2’,4’-dihydroxychalcone (36), galangin 3-methyl ether (37), galangin 3,7-dimethyl ether (38), isoliquiritigenin 4-methyl ether (39), cardamonin (40), pinostrobin (41), isoliquiritigenin (42), arjunolic acid (43), quercetin 3-O-β-D-lyxosopyranoside (44). 5. Chemical constituents and biological activities of the genus Dysoxylum (Meliaceae) were reviewed during 1976-2009.
Resumo:
何首乌为常用中药,由何首乌及含何首乌的中成药制剂所引起的不良反应也时见报道,科学阐明不良反应的物质基础并提出解决方案对何首乌的使用十分重要。本论文研究了何首乌炮制前后KM小鼠肝脏毒性基因表达谱、生物活性及化学成分的变化。所获结果支持何首乌炮制的目的是减毒、改性(改变药效),何首乌生、熟异治的观点。制首乌对抑郁症的效果显著优于生首乌,这与本草所记载的何首乌炮制后补肝肾、益精血,归肝、肾经一致。 主要结果如下: 1、 生、制首乌的毒理基因芯片研究结果 何首乌的不良反应主要表现在肝损害方面。本研究建立了生何首乌和制何首乌不同剂量的肝毒性作用模型,体重指标统计发现生何首乌各剂量组平均体重显著下降,中剂量组(10 g/kg.d)体重下降20 %,高剂量组(20 g/kg.d)体重下降42%,50%动物死亡,提示动物机体能量代谢障碍;基因芯片研究结果表明何首乌是CYP450的抑制剂,生何首乌相对于制何首乌CYP3A4、CYP4A5显著下调,导致毒性成分在体内的吸收增加,服用大剂量的生何首乌后产生明显的肝毒性;主要对以下六条Pathway产生影响:①PPAR signaling pathway,主要毒性靶基因有RXRB CYP7a1、Acadl、Apoa2、Cyp4a、 FABP2 、MAPKKK5等基因。②Calcium signaling pathway,主要毒性靶基因有CAMK2B、CACNA1F、S100A1、 F2R、Ryr1、Slc8a2、Camk4 ③Neuroactive ligand-receptor interaction,主要毒性靶基因有Chrm4、 Ntsr2 、 GABRR1、 GRIK3、F2R等基因。④Wnt signaling pathway,主要毒性靶基因有Daam2、Rac1 等基因。⑤Complement and coagulation cascades,主要毒性靶基因有F2R、Serpina1b、Cfi 、FGA等基因。⑥Oxidative hosphorylation,主要毒性靶基因有Atp5e、NDUFA1等基因。生何首乌毒性明显强于制首乌,且生何首乌水煎液的毒性大于生何乌首丙酮提取物的毒性,这一结果表明,何首乌主要的毒性成分很可能并不仅仅是传统所认为的以大黄素为代表的蒽醌类化合物,而是何首乌中大量存在的有效组分二苯乙烯苷与大黄素相互作用的结果,这一研究结果与前述的何首乌对肝药酶的影响是一致的。后续生、制首乌的化学成分差异研究表明,炮制后二苯乙烯苷含量明显降低:生首乌为5.512 %、清蒸制首乌为3.811 %、豆制首乌为3.538 %,大黄素的含量炮制后显著升高,生首乌为0.094 %、清蒸制首乌为0.119 %、豆制首乌为0.126 %。 2 生、制首乌药效差异研究结果 本文采用慢性中等强度不可预知应激刺激模型(chronic unpredictable mild stress, CUMS)和动物行为绝望实验法,研究生、制首乌抗抑郁活性的差异,制首乌(5 g/kg.d)与模型组相比有显著差异(P< 0.01),生首乌制首乌(5g/kg.d)与模型组相比无显著差异,这一结果表明制首乌抗抑郁活性显著优于生首乌。 本文比较了生、制首乌对四氧嘧啶糖尿病模型小鼠血糖的影响的差异,生首乌(5 g/kg.d)与模型组相比有显著差异(P< 0.01),制首乌(5 g/kg.d)与模型组相比无显著差异,这一结果表明生首乌降糖活性优于制首乌。这一结果与历代中医古书中生首乌治疗消渴症(糖尿病)的记载一致。 3生、制首乌化学成分差异的研究结果 本文选用HPLC-DAD指纹图谱技术结合药效成分含量测定来研究生、制首乌化学成分的差异。炮制后,何首乌中的主要化学成分并未消失,只是其含量发生了改变。炮制后二苯乙烯苷含量明显降低:生首乌为5.512 %、清蒸制首乌为3.811 %、豆制首乌为3.538 %,大黄素的含量炮制后显著升高,生首乌为0.094 %、清蒸制首乌为0.119 %、豆制首乌为0.126 %。 综上所述,炮制前后何首乌中二苯乙烯苷和大黄素含量比的变化可能是何首乌炮制减毒、改性的物质基础。 根据上述结果我们建立了生、制首乌的质量控制新模式。 In recent years, some adverse drug reactions (ADR) about some traditional Chinese medicine were reported at times. As a Chinese medicine most in use, the ADRs of Radix Polygoni multiflori (RPM) and the medicines containing the RPM were also mentioned. The resolution of the problems caused by the ADRs is very important for the use of the RPM as a medicine. The process (or preparation) is a significant feature for the clinical use of the Chinese medicine and an important technology for the safe use and good effect of the Chinese medicine. By processing, the toxicity of the Chinese medicine can be reduced, its properties can be changed and curative effect can be enhanced at the same time. The changes of the gene expression profiles for KM mice hepatotoxic effects, and the change of the biological activity and the chemical composition after being processed of the RPm were studied in the present dissertation. The RPm heatotoxicity mechanism and the toxicity target genes were explained on the gene level for the first time. With the antidepressant activity, and the hypoglycemic effect as the target, the differences on the pharmacodynamics between the processed RPm and unprocessed RPm, for the first time, were investigated. The results obtained show that the antidepressant activity of the processed RPM is far higher than the ones of unprocessed RPm. As we know, the results were reported for the first time. The quality control systems (QCS) for the processed and the unprocessed RPm were founded. The HPLC-DAD was used in the systems founded on the basis of the toxicology and the pharmacodynamics experiments. As we know, the OCSs were reported for the first time. The above-mentioned experimental results confirm that the unique process theory of the traditional Chinese medicine (TCM) used for the process of the Radix Polygoni multiflori (RPm) is correct, i.e after being processed the toxicity of the RPm decreases and its Pharmacodynamic effects change. It is known to author that there have been no similar reports in the literatures up to now. The main experimental results are summarized as follows: 1 The results on the mice toxicology gene chip for the unprocessed and processed RPm The KM mice hepatotoxic model caused by the RPm at the different dosages was established in the present study. The results obtained show that the mouse average body weight obviously decreased in the groups at the different dosages of the unprocessed RPm: the 10 g/kg.d .group decreased 20%; 20 g/kg.d. group decreased 42%, and 50% mice died at 20 g/kg.d. group. The main experimental results on the mice toxicology gene chip The RPm is the CYP450 inhibitor. As compared with the processd RPm, the CYP3A4, CYP4A5 of the unprocessed RPm demonstrate the marked downregulation, which leads to the increase of the poison absorbtion into the body with the result that the unprocessed RPm yields the marked hepatotoxication. The hepatotoxication was produced because the following 6 pathways were affected: ①PPAR signaling pathway, the chief toxicity target genes are RXRB, CYP7a1, Acadl, Apoa2, Cyp4a, FABP2 and MAPKKK5 etc. ②Calcium signaling pathway, the chief toxicity target genes are CAMK2B, CACNA1F, S100A1, F2R, Ryr1,Slc8a2 and Camk4 etc. ③Neuroactive ligand-receptor interaction, the chief toxicity target genes are Chrm4, Ntsr2, GABRR1, GRIK3 and F2R etc. ④Wnt signaling pathway, the chief toxicity target genes are Daam2, Rac1 etc. ⑤Complement and coagulation cascades, the chief toxicity target genes are F2R, Serpina1b, Cfi and FGA etc. ⑥Oxidative phosphorylation, the chief toxicity target genes are Atp5e, NDUFA1 etc. The above experimental results, for the first time , demonstrate on the gene level that the unprocessed Rpm toxicity is far stronger than the processed RPm one, and the toxicity of the water decoction of the unprocessed RPm is greater than the one of its acetone extracts, which shows that the chief toxicity components of the RPm are probably not only the anthraquinones, for example, the emodin, but the complex compounds produced by the interaction between the emondin and the stilbene glucoside which is the largest component of the unprocessed RPm. The result is accordance with the above effect of the RPm on the hepatic drugenzyme. Aftter being processed, in fact, the content of the stibene glucoside in the RPm markedly decreases. 2. The results on the pharmacodynamic differences between the unprocessed and processed RPm The results obtained show that the effects of processing on RPm pharmacodynamic behaviour received in the Chinese Material Medica are correct. It is known to author that this is the first experimental result in the research materials now available. The chief results are as follows: For the treatment of the antidepressant, the curative effect of the processed RPm is far better than the one of the unprocessed RPm. By contrast with the above results, the hypoblycemic effect of the unprocessed RPm is better than the one of the processed RPm. 3. The results on the Chemical Composition The results obtained by using HPLC-DAD fingerprint and by the determination of effective component content show that the main chemical components in the RPm after being processed do not disappear, but their contents change. The contents of the stilbene glucoside (SG) and emodin in the different samples were determined as follows: SG contents 5.512 % for the unprocessed RPm 3.811 % for the processed RPm (Steamed) 3.588 % for the processed RPm (black soybean) Emodin contents 0.094 % for the unprocessed RPm 0.119 % for the processed RPm (Steamed) 0.126 % for the processed RPm (black soybean) The combination of above experimental results on the toxicity, the pharmacodynamics and the chemical composition indicates that the changes of the content ratio of SG/emodin may be the substance base of the toxicity decrease and pharmacodynamic changes of the RPM by the processing.
Resumo:
首次从野桂花(Osmanthus yunnanensis Fr. P. S. Green)地上部分95%乙醇提取物中通过色谱分离得到20个化合物, 其中化合物20为新化合物。基于波谱数据它们被鉴定为(E)-阿魏酸二十烷基酯(1)、β-谷甾醇(2)、羽扇豆醇(3)、齐墩果酸(4)、7-oxo-β-sitosterol(5)、乙酰齐墩果酸(6)、(6′-O-palmitoyl)-sitosterol 3-O-β-D-glucoside(7)、rotundioic acid(8)、地榆糖甙Ⅱ(9)、27-O-(E)-对羟基肉桂酰-28-齐墩果酸(10)、27-O-(Z)-对羟基肉桂酰-28-齐墩果酸(11)、hycandinic acid ester(12)、绿原酸丁酯(13)、4,5-二咖啡酰奎尼酸丁酯(14)、4,5-dihydroxyprenyl caffeate(15)、28-O-β-D-glucopyranosyl rotundioic acid (16)、4-(6-O-caffeoyl-β-D-glucopyranosyloxy)-5-hydroxyprenyl caffeate (aohada-glycoside C, 17)、 4-β-D-glucopyranosyloxy-5-hydroxy-prenyl caffeate (aohada-glycoside A, 18)、β-胡萝卜甙(19)以及3-[O-β-D-(6-O-咖啡酰吡喃葡萄糖)]-甲基-2-烯-γ-内酯 (20)。化合物13、14、15和17有较强的α-葡萄糖甙酶抑制活性。当浓度为1 mg/ml时,它们对α-葡萄糖甙酶的抑制分别为61.5%、95.5%、72.1%、62.6%,活性高于阿卡波糖。 综述了木犀属植物化学成分及1993年以来苯丙素甙类化合物活性研究进展。 Twenty compounds were isolated from the 95% ethanol extract of the aerial parts of Osmanthus yunnanensis Fr. P. S. Green by chromatography for the first time. On the basis of spectral data, they were identified as (E)-ferulic acid eicosyl ester (1), β-sitosterol (2), lupenol (3), oleanolic acid (4), 7-oxo-β-sitosterol (5), acetyloleanolic acid (6), (6′-O-palmitoyl)-sitosterol 3-O-β-D-glucoside (7), rotundioic acid (8), ziyu glycosideⅡ (9), 3β-hydroxy-27-p-(E)-coumaroyloxy-olean-12-en-28-oic acid (10), 3β-hydroxy-27-p-(Z)-coumaroyloxyolean-12-en-28-oic acid (11), hycandinic acid ester (12), chlorogenic acid butyl ester (13), 4,5-di-O-caffeoylquinic acid butyl ester (14), 4,5-dihydroxyprenyl caffeate (15), 28-O-β-D-glucopyranosyl rotundioic acid (16), 4-(6-O-caffeoyl-β-D-glucopyranosyloxy)-5-hydroxyprenyl caffeate (aohada- glycoside C, 17), 4-β-D-glucopyranosyloxy-5-hydroxyprenyl caffeate (aohada- glycoside A, 18), β-daucosterol(19) and 3-[O-β-D-(6-O-caffeoylglucopyranosyl)]- methyl-2-en-γ-lactone (20). Compound 20 is a new one. Compounds 13, 14, 15 and 17 inhibit α-glucosidase with corresponding inhibitory rate of 61.5%, 95.5%, 72.1% and 62.6% at a concentration of 1 mg/ml, higher than acarbose. The chemical studies on Osmanthus genus and bioactivities of phenylpropanoid glycosides were summarized.