114 resultados para 3-BODY FORCE
Resumo:
The thickness of the gold film and its morphology, including the surface roughness, are very important for getting a good, reproducible response in the SPR technique. Here, we report a novel alternative approach for preparing SPR-active substrates that is completely solution-based. Our strategy is based on self-assembly of the gold colloid monolayer on a (3-aminopropyl)trimethoxysilane-modified glass slide, followed by electroless gold plating. Using this method, the thickness of films can be easily controlled at the nanometer scale by setting the plating time in the same conditions. Surface roughness and morphology of gold films can be modified by both tuning the size of gold nanoparticles and agitation during the plating. Surface evolution of the Au film was followed in real time by UV-vis spectroscopy and in situ SPRS. To assess the surface roughness and electrochemical stability of the Au films, atomic force microscopy and cyclic voltammetry were used. In addition, the stability of the gold adhesion is demonstrated by three methods. The as-prepared Au films on substrates are reproducible and stable, which allows them to be used as electrodes for electrochemical experiments and as platforms for studying SAMs.
Resumo:
Nanoindentation technique and scanning force microscopy have been used to measure directly the polyethylene modulus along the chain axis. Single crystals of polyethylene were employed in order to obtain well-aligned chain segments. To minimize effects of scanner creep, a Z scan rate of 3 Hz was employed. The "X Rotate" value of 25 degrees was selected to eliminate effects of lateral tip motion. The results were analyzed by the Oliver -Pharr method for which direct observation and measurement of the contact area are not required. Considering the influence of tip roundness on the projected contact area, the nanoindentation results were analyzed by the Sawa method. The chain modulus obtained from the thinner polyethylene single crystal sample was 204 +/- 21 GPa by the Oliver-Pharr method and 168 +/- 17 GPa by the Sawa method. The lower values than expected were due to substrate effects and anisotropy of chain deformation during nanoindentation. An extrapolation of the chain modulus obtained by various strains to zero nanoindentation eliminated the effect of substrate and anisotropy of chain deformation. The corresponding chain modulus obtained from the thicker sample was 278 GPa by the Oliver-Pharr method and 267 GPa by the Sawa method, respectively, in better agreement with the value of 340 Cpa determined theoretically. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Lipopolysaccharide and beta-1,3-glucan-binding protein (LGBP) play a crucial role in the innate immune response of invertebrates as a pattern recognition protein (PRP). The scallop LGBP gene was obtained from Chlamys farreri challenged by Vibrio anguillarum by randomly sequencing cDNA clones from a whole body cDNA library, and by fully sequencing a clone with homology to known LGBP genes. The scallop LGBP consisted of 1876 nucleotides with a canonical polyadenylation signal sequence AATAAA and a poly(A) tail, encoding a polypeptide of 440 amino acids with the estimated molecular mass of 47.16 kDa and a predicted isoelectric point of 5.095. The deduced amino acid sequence showed a high similarity to that of invertebrate recognition proteins from blue shrimp, black tiger shrimp, mosquito, freshwater crayfish, earthworms, and sea urchins, with conserved features including a potential polysaccharide-binding motif, a glucanase motif, and N-glycosylation sites. The temporal expression of LGBP genes in healthy and V. anguillarum-challenged C farreri scallop, measured by real-time semiquantitative reverse transcription polymerase chain reaction (PCR), showed that expression was up-regulated initially, followed by recovery as the stimulation cleared. Results indicated that scallop LGBP was a constitutive and inducible acute-phase protein that could play a critical role in scallop-pathogen interaction. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
To investigate the effects of body size and water temperature on feeding and growth in the sea cucumber Apostichopus japonicus (Selenka), the maximum rate of food consumption in terms of energy (C-maxe; J day(-1)) and the specific growth rate in terms of energy (SGRe; % day(-1)) in animals of three body sizes (mean +/- SE) - large (134.0 +/- 3.5 g), medium (73.6 +/- 2.2 g) and small (36.5 +/- 1.2 g) - were determined at water temperatures of 10, 15, 20, 25 and 30 degrees C. Maximum rate of food consumption in terms of energy increased and SGRe decreased with increasing body weight at 10, 15 and 20 degrees C. This trend, however, was not apparent at 25 and 30 degrees C, which could be influenced by aestivation. High water temperatures (above 20 degrees C) were disadvantageous to feeding and growth of this animal; SGRe of A. japonicus during aestivation was negative. The optimum temperatures for food consumption and for growth were similar and were between 14 and 15 degrees C, and body size seemed to have a slight effect on the optimal temperature for food consumption or growth. Because aestivation of A. japonicus was temperature dependent, the present paper also documented the threshold temperatures to aestivation as indicated by feeding cessation. Deduced from daily food consumption of individuals, the threshold temperature to aestivation for large and medium animals (73.3-139.3 g) was 24.5-25.5 degrees C, while that for small animals (28.9-40.7 g) was between 25.5 and 30.5 degrees C. These values are higher than previous reports; differences in sign of aestivation, experimental condition and dwelling district of test animals could be the reasons.
Resumo:
Red tides (high biomass phytoplankton blooms) have frequently occurred in Hong Kong waters, but most red tides occurred in waters which are not very eutrophic. For example, Port Shelter, a semi-enclosed bay in the northeast of Hong Kong, is one of hot spots for red tides. Concentrations of ambient inorganic nutrients (e.g. N, P), are not high enough to form the high biomass of chlorophyll a (chl a) in a red tide when chl a is converted to its particulate organic nutrient (N) (which should equal the inorganic nutrient, N). When a red tide of the dinoflagellate Scrippsiella trochoidea occurred in the bay, we found that the red tide patch along the shore had a high cell density of 15,000 cells ml(-1), and high chl a (56 mu g l(-1)), and pH reached 8.6 at the surface (8.2 at the bottom), indicating active photosynthesis in situ. Ambient inorganic nutrients (NO3, PO4, SiO4, and NH4) were all low in the waters and deep waters surrounding the red tide patch, suggesting that the nutrients were not high enough to support the high chl a >50 mu g l(-1) in the red tide. Nutrient addition experiments showed that the addition of all of the inorganic nutrients to a non-red-tide water sample containing low concentrations of Scrippsiella trochoidea did not produce cell density of Scrippsiella trochoidea as high as in the red tide patch, suggesting that nutrients were not an initializing factor for this red tide. During the incubation of the red tide water sample without any nutrient addition, the phytoplankton biomass decreased gradually over 9 days. However, with a N addition, the phytoplankton biomass increased steadily until day 7, which suggested that nitrogen addition was able to sustain the high biomass of the red tide for a week with and without nutrients. In contrast, the red tide in the bay disappeared on the sampling day when the wind direction changed. These results indicated that initiation, maintenance and disappearance of the dinoflagellate Scrippsiella trochoidea red tide in the bay were not directly driven by changes in nutrients. Therefore, how nutrients are linked to the formation of red tides in coastal waters need to be further examined, particularly in relation to dissolved organic nutrients. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Shrimps Litopenaeus vannamei with initial body weight of 2.108 +/- 0.036 g were sampled for specific growth rates (SGR) and body color measurements for 50 days under different light sources (incandescent lamp, IL; cool-white fluorescent lamp, FL; metal halide lamp, MHL; and control without lamp) and different illumination methods (illumination only in day, IOD, and illumination day and night, IDN). Body color of L. vannamei was measured according to the free astaxanthin concentration (FAC) of shrimp. The SGR, food intake (FI), feed conversion efficiency (FCE) and FAC of shrimps showed significant differences among the experimental treatment groups (P < 0.05). Maximum and minimum SGR occurred under IOD by MHL and IDN by FL, respectively (difference 56.34%). The FI of shrimp for the control group did not rank lowest among treatments, confirming that shrimp primarily use scent, not vision, to search for food. FI and FCE of shrimps were both the lowest among treatment groups under IDN by FL and growth was slow, thus FL is not a preferred light source for shrimp culture. Under IOD by MHL, shrimps had the highest FCE and the third highest FI among treatment groups ensuring rapid growth. FAC of shrimp were about 3.31 +/- 0.20 mg/kg. When under IOD by MHL and IDN by FL, FAC was significantly higher than the other treatments (P < 0.05). To summarize, when illuminated by MHL, L. vannamei had not only vivid body color due to high astaxanthin concentration but also rapid growth. Therefore, MHL is an appropriate indoor light source for shrimp super-intensive culture. SGR of shrimp was in significantly negative correlation to FAC of shrimp (P < 0.05). Thus, when FAC increased, SGR did not always follow, suggesting that the purpose of astaxanthin accumulation was not for growth promotion but for protection against intense light. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Changes in photoperiod, ambient temperature and food availability trigger seasonal acclimatization in physiology and behavior of many animals. In the present study, seasonal adjustments in body mass and in several physiological, hormonal, and biochemical markers were examined in wild-captured plateau pikas (Ochotona curzoniae) from the Qinghai-Tibetan plateau. Our results showed that plateau pikas maintained a relatively constant body mass throughout the year and showed no seasonal changes in body fat mass and circulating levels of serum leptin. However, nonshivering thermogenesis, cytochrome c oxidase activity, and mitochondrial uncoupling protein 1 (UCP1) contents in brown adipose tissues were significantly enhanced in winter. Further, serum leptin levels were positively correlated with body mass and body fat mass while negatively correlated with UCP1 contents. Together, these data suggest that plateau pikas mainly depend on increasing thermogenic capacities, rather than decreasing body mass, to cope with cold, and leptin may play a potential role in their thermogenesis and body mass regulation.
Resumo:
The influence of air and soil warming on root vole (Microtus oeconomus L.) population was studied in winter period in top open chambers (OTC) (0.8-1.8 m(2) warmed by conical fiberglass material and situated in alpine meadow (3250 m) at Qinghai-Tibet Plateau, China. The OTCs were distributed on an area of 30 x 30 m of experimental warming site; another site of the same area was a control one. The root vole population was investigated on two pairs of sites in "low-grazing" and "high-grazing" (by sheep) parts of the meadow; mark-recapture method was used. The winter-season averaged air and soil temperature inside of the chambers were 1.3 degrees C higher than the temperature outside the chambers. The warming in the chambers had no statistically significant effect on root vole numbers, on average body mass of individual, and on average body mass of males and females. In conclusion, as small as 1.3 degrees C warming of soil and air introduced locally and on small (several m(2)) scale, in the alpine meadow habitat in winter period, has possibly no effect on root vole numbers and biomass.
Resumo:
以一种3自由度并联驱动机器人为研究对象,研究这种机器人的变刚度特性。从操作臂的静力学出发,对并联柔索驱动机器人的刚度进行了分析得到刚度公式。从得到的公式可以看出,操作臂的刚度不仅与各分支的刚度有关,与操作臂位姿有关,还与张紧柔索的张紧力有关。在机器人各分支上串联刚度较低的弹簧后做刚度实验,试验结果验证了对刚度理论分析所得的结论。