133 resultados para 111-677B
Resumo:
Both bare and self-assembled monolayer (SAM) protected gold substrate could be etched by allyl bromide according to atomic force microscopy (AFM), x-ray photoelectron spectroscopy (XPS) and inductively coupled plasma mass spectrometric (ICPMS) analysis results. With this allyl bromide ink material, negative nanopatterns could be fabricated directly by dip-pen nanolithography (DPN) on SAMs of 16-mercaptohexadecanoic acid (MHA) on Au(111) substrate. A tip-promoted etching mechanism was proposed where the gold-reactive ink could penetrate the MHA resist film through tip-induced defects resulting in local corrosive removal of the gold substrate. The fabrication mechanism was also confirmed by electrochemical characterization, energy dispersive spectroscopy (EDS) analysis and fabrication of positive nanopatterns via a used DPN tip.
Resumo:
Surface replacement reaction of thiol-derivatized, single-stranded oligonucleotide (HS-ssDNA) by mercaptohexanol (MCH) is investigated in order to reduce surface density of the HS-ssDNA adsorbed to Au(111) surface. Cyclic voltammograms (CVs) and scanning tunneling microscopy (STM) are employed to assess the composition and state of these mixed monolayers. It is found that each CV of mixed self-assembled monolayers (SAMs) only shows a single reductive desorption peak, which suggests that the resulted, mixed SAMs do not form discernable phase-separated domains. The peak potential gradually shifts to negative direction and the peak area increases step by step over the whole replacement process. By analyzing these peak areas, it is concluded that two MCH molecules will replace one HS-ssDNA molecule and relative coverage can also be estimated as a function of exposing time. The possible mechanism of the replacement reaction is also proposed. The DNA surface density exponentially reduces with the exposing time increasing, in other words, the replacement reaction is very fast in the first several hours and then gradually slows down. Moreover, the morphological change in the process is also followed by STM.
Resumo:
A new and simple approach for preparation of Au(111) single-crystal nanoisland - arrayed electrode ensembles, based on fine colloidal Au monolayer-directed seeding growth, is reported.
Resumo:
Nanogold colloidal solutions are prepared by the reduction of HAuClO4 with sodium citrate and sodium borohydride. 4-Aminothiophenol (ATP) self-assembled monolayers (SAMs) are formed on gold(lll) surface, on which gold nanoparticles are immobilized and a sub-monolayer of the particles appears. This sub-monolayer of gold nanoparticles is characterized with scanning tunneling microscopy (STM), and a dual energy barrier tunneling model is proposed to explain the imageability of the gold nanoparticles by STM. This model can also be used to construct multiple energy barrier structure on solid/liquid interface and to evaluate the electron transport ability of some organic monolayers with the aid of electrochemical method.
Resumo:
Self-assembled monolayer of natural single-stranded DNA (ssDNA) from dl:natured plasmid DNA and pBR322/PstI marker was first observed on Au(111) by low-current STM (Lc-STM). The width of ssDNA stripe measured is 0.9 +/- 0.1 nm, which is just half of the theoretical width of double-stranded DNA (dsDNA). Each ssDNA stripe consists of bright and dark parts. alternatively; the period of two adjacent bright parts in the same ssDNA stripe measured is 0.4 +/- 0.1 nm, which is consistent with the theoretical distance between two adjacent base pairs in ssDNA. The stripe orientations in ssDNA domains are predominately at angles of 0 degrees, 60 degrees or 120 degrees relative to crystallographically faceted steps on the gold surface. The electrochemical experiment indicated that it was ssDNA but not dsDNA that was absorbed on Au(111)surface. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Tb(111) and Ca(11) ion equilibria in the Presence of glutamic acid and glutamine were studied by potentiometric titration at 37 degrees C and an ionic strength of 0.15mol/L(NaCl). The stability constants for Tb(111) and Ca(11) complexes in the systems were obtained. The species and their distribution in the systems were discussed.
Theoretical investigation on the adsorption of Ag+ and hydrated Ag+ cations on clean Si(111) surface
Resumo:
In this paper, the adsorption of Ag+ and hydrated Ag+ cations on clean Si(111) surface were investigated by using cluster (Gaussian 03) and periodic (DMol(3)) ab initio calculations. Si(111) surface was described with cluster models (Si14H17 and Si22H21) and a four-silicon layer slab with periodic boundary conditions. The effect of basis set superposition error (BSSE) was taken into account by applying the counterpoise correction. The calculated results indicated that the binding energies between hydrated Ag+ cations and clean Si(111) surface are large, suggesting a strong interaction between hydrated Ag+ cations and the semiconductor surface. With the increase of number, water molecules form hydrogen bond network with one another and only one water molecule binds directly to the Ag+ cation. The Ag+ cation in aqueous solution will safely attach to the clean Si(111) surface.
Resumo:
To model the adsorption of Na+ in aqueous solution on the semiconductor surface, the interactions of Na+ and Na+(H2O)(n) (n = 1-6) with a clean Si(111) surface were investigated by using hybrid density functional theory (B3LYP) and Moller-Plesset second-order perturbation (MP2) methods. The Si(111) surface was described with Si8H12, Si16H20, and Si22H21 Cluster models. The effect of the basis set superposition error (BSSE) was taken into account by applying the counterpoise (CP) correction. The calculated results indicated that the interactions between the Na+ cation and the dangling bonds of the Si(111) surface are primarily electrostatic with partial orbital interactions. The magnitude of the binding energies depends weakly on the adsorption sites and the size of the clusters. When water molecules are present, the interaction between the Nal and Si(I 11) surfaces weakens and the binding energy has the tendency to saturate. On a Si22H21 cluster described surface, the optimized Na+-surface distance for Na+(H2O)(5) adsorbed at on-top site is 4.16 angstrom and the CP-corrected binding energy (MP2) is -35.4 kJ/mol, implying a weakly adsorption of hydrated Na+ cation on clean Si(111) surface.
Resumo:
To evaluate the interactions between the atoms of An, Ag and Cu and clean Si(111) surface, two types of silicon clusters Si4H7 and Si16H20 together with their metal complexes were studied by using hybrid (U)B3LYP density functional theory method. Optimized geometries and energies on different adsorption sites indicate that: (1) the binding energies at different adsorption sites are large (ranging from similar to 1.2 to 2.6 eV depend on the metal atoms and adsorption sites), suggesting a strong interaction between metal atom and silicon surface; (2) the most favorable adsorption site is the on top (T) site. Mulliken population analysis indicated that in the system of on top (T) site, a covalent bond is formed between metal atom and dangling bond of surface Si atom. (c) 2006 Elsevier B.V. All rights reserved.