126 resultados para 04021241 TM-36
Resumo:
Three-dimensional flowerlike Lu2O3 and Lu2O3:Ln(3+) (Ln = Eu, Th, Dy, Pr, Sm, Er, Ho, Tm) microarchitectures have been successfully synthesized via ethylene glycol (EG)-mediated hydrothermal method followed by a subsequent heat treatment process. X-ray diffraction, Fourier transform infrared spectroscopy, energy-dispersive X-ray spectra, thermogravimetric and differential thermal analysis, elemental analysis, inductively coupled plasma atomic absorption spectrometric analysis, ion chromatogram analysis, X-ray photoelectron spectra, scanning electron microscopy, transmission electron microscopy, photoluminescence spectra as well kinetic decays, and cathodoluminescence spectra were used to characterize the samples. Hydrothermal temperature, EG, and CH3COONa play critical roles in the formation of the lutetium oxide precursor microflowers. The reaction mechanism and the self-assembly evolution process have been proposed. The as-formed lutetium oxide precursor could transform to Lu2O3 With their original flowerlike morphology and slight shrinkage in the size after postannealing process.
Resumo:
Five new complexes based on rare-earth-radical [Ln(hfac)(3)(NIT-5-Br-3py)](2) (Ln=Pr (1), Sm (2), Eu (3), Tb (4), Tm (5); hfac = hexafluoroacetylacetonate; NIT-5-Br-3py = 2-(4,4,5,5-tetramethyl-3-oxylimidazoline-1-oxide)-5-bromo-3-pyridine) have been synthesized and characterized by X-ray crystal diffraction. The single-crystal structures show that these complexes have similar structures, in which a NIT-5-Br-3py molecule acts as a bridging ligand linking two Ln(III) ions through the oxygen atom of the N-O group and nitrogen atom from the pyridine ring to form a four-spin system. Both static and dynamic magnetic properties were measured for complex 4, which exhibits single-molecule magnetism behavior.
Resumo:
beta-NaYF4:Ln(3+) (Ln = Eu, Tb, Yb/Er, and Yb/Tm) hexagonal microprisms with remarkably uniform morphology and size have been synthesized via a facile hydrothermal route. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and photoluminescence (PL) spectra as well as kinetic decays were used to characterize the samples. It is found that sodium citrate as a shape modifier introduced into the reaction system plays a critical role in the shape evolution of the final products. Furthermore, the shape and size of the products can be further manipulated by adjusting the molar ratio of citrate/RE3+ (RE represents the total amount of Y3+ and the doped rare earth elements such as Eu3+, Tb3+, Yb3+/Er3+, or Yb3+/Tm3+). Under the excitation of 397 nm ultraviolet light, NaYF4:xEu(3+) (x = 1.5, 5%) shows the emission lines of Eu3+ corresponding to D-5(0-3) -> F-7(J) (J = 0-4) transitions from 400 to 700 nm (whole visible spectral region) with different intensity, resulting in yellow and red down-conversion (DC) light emissions, respectively.
Resumo:
LiBa2B5O10:RE3+ (RE = Dy, Tb and Tm) was synthesized by the method of high-temperature solid-state reaction and the thermoluminescence (TL) properties of the samples under the irradiation of the gamma-ray were studied. The result showed that Dy3+ ion was the most efficient activator. When the concentration of Dy3+ was 2 mol%, LiBa2B5O10:Dy3+ exhibited a maximum TL output. The kinetic parameter of LiBa2B5O10:0.02Dy was estimated by the peak shape method, for which the average activation energy was 0.757 eV and the frequency factor was 1.50 x 10(7) s(-1). By the three-dimensional (3D) TL spectrum, the TL of the sample was contributed to the characteristic f-f transition of DY3+. The dose-response of LiBa2B5O10:0.02Dy to gamma-ray was linear in the range from 1 to 1000 mGy. In addition, the decay of the TL intensity of LiBa2B5O10:0.02Dy was also investigated.
Resumo:
Ultrathin multilayer films of the wheel-shaped molybdenum polyoxometalate cluster (Mo-36)(n) and poly(allylamine hydrochloride) (PAH) have been prepared by the layer-by-layer (LbL) self-assembly method. The ((Mo-36)(n)/PAH)(m) multilayer films have been characterized by Xray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). UV-VIS measurements reveal regular film growth with each (Mo-36)(n) adsorption. The electrochemical behavior of the film at room temperature was investigated.
Resumo:
The spectroscopic feature of divalent Sm2+, Eu2+, Tm2+ and Yb2+ is discussed in this paper. Especially the spectroscopic properties of some berates containing tetrahedral BO4 group such as SrB4O7, SrB6O10 and BaB8O13 doped with these divalent ions are reported. When the divalent alkaline earth ion in these berates is replaced partially by the above trivalent rare earth ion, the charge carried in the produced defects can be used as reductant to reduce the doped rare earth ion into divalent state at high temperature even in air. Therefore, a convenient and safe method is provided to prepared phosphors doped with these divalent rare earths.
Resumo:
本文讨论了Sm2 + 、Eu2 + 、Tm2 + 、Yb2 + 等二价稀土离子的光谱特征 ,特别是在一些含四面体硼酸根的硼酸盐如SrB4 O7、SrB6 O10 和BaB8O13中它们的光谱性质。当以三价稀土离子取代化合物中的二价碱土离子时 ,利用不等价取代而产生的缺陷所带的电荷 ,可在高温的空气下使上述的稀土离子还原成二价 ,不需加入化学还原剂 ,从而提出了一个简便、安全的制备含二价稀土离子发光材料的方法
Resumo:
采用溶胶 -凝胶方法合成了系列化合物 (Y1 -x- yTbxTmy) 3Al5O1 2 ,研究了Tb3+在该化合物中的发光及其浓度对发光性质的影响 ,以及Tb3+与Tm3+间的能量传递现象。
Resumo:
Chemical bond parameters in RBa2Cu4O8(R = Dy, Ho, Er, Tm, Yb) and Y2Ba4Cu7O14.3 were calculated by using complex chemical bond theory. The results indicated that the bond covalency in CuO chain was larger than that in CuO2 plane. For metal atoms, the bond covalency of five coordinated case was larger than that of six coordinated case.
Resumo:
使用复杂晶体上化学键理论计算了 RBa2 Cu4 O8(R=Dy,Ho,Er,Tm ,Yb)和 Y2 Ba4 Cu7O14 .3 的化学键参数 .结果表明 ,Cu O链上的 Cu O键共价性大于它们在 Cu O2 面的共价性 .当金属元素与氧形成五配位时 ,其共价性的数值大于这些元素在六配位时的情形
Resumo:
The reduction of RE3+ to RE2+ (RE=Eu, Sm and Tm) in SrB6O10 prepared in air by high-temperature solid state reaction was observed. The luminescent properties of Eu2+ and Tm2+ show f-d transition and Sm2+ shows f-f transition at room temperature. Three crystallographic sites for Sm2+ in matrix are available. Vibronic transition of D-5(0)-F-7(0) of Sm2+ was studied. The coupled phonon energy about 108 cm(-1), was determined: from the vibronic transition. Due to the thermal population from D-5(0) level, (D1-FJ)-D-5-F-7 (J=0, 1, 2) transitions of Sm2+ were observed at room temperature. A charge compensation mechanism is proposed as a possible explanation.
Resumo:
Bond covalencies in R2BaCuO5 (R = Sm, Gd, Dy, Ho, Y, Er, Tm, Yb, Lu) were calculated by means of a semiempirical method. This method is the generalization of the dielectric description theory of Phillips-Van Vechten-Levine-Tanaka scheme. The present paper presents the formula concerning the decomposing of complex crystals which are usually anisotropic systems into the sum of binary crystals which are isotropic systems. It can be seen that although the bond covalency is related to many physical quantities, it is mainly influenced by bond valence or bond charge, and a higher bond valence will produce higher bond covalency.
Resumo:
RBa2Cu3O7 (R = Pr, Sm, Eu, Gd, Dy, Y, Ho, Er, Tm) has been studied using complex chemical bond theory. The results indicated that with the decreasing of R radius, the ionicities for all considered types of bond decrease. This is in good agreement with the experimental fact that T-c decreases with the decreasing of R radius. PrBa2Cu3O7 with no Ba-site Pr in this calculation is also predicted to be a superconductor. This supports the conclusion obtained by Blackstead et al. The ionicity for each bond obeys the following order: Ba-O > R-O > Cu(2)-O(1) > Cu(2)-O(2,3) > Cu(1)-O(4) similar to Cu(1)-O(1).
Resumo:
采用高温固相反应法,LiF/MgF2/AlF3=120/110/100,烧结温度为1008K,烧结时间为4h,在流动的高纯Ar中合成了LiMgAlF6:Tm3+。对其结构和发光特性进行了研究。