424 resultados para 0-DEGREES-C
Resumo:
The toxic effects of La3+ on Tetrahymena thermophila have been studied by microcalorimetry at 28 degrees C. The metabolic rate constant (r) and peak time were linked to the concentration of La3+. The changes of metabolic rate constant indicated that low-concentration La3+ (0-75 mg/L) had no significant effects on the metabolism of Tetrahymena cells but high-concentration La3+ (100-175 mg/L) could inhibit their metabolism. From the results obtained by cell counting and fluorescence depolarization measurements, the inhibition of metabolism resulted from the decrease in cell number and the reduction in cell membrane fluidity. According to the results, it is clear that the metabolic mechanism of Tetrahymena cells has been changed with the addition of high-concentration La3+. In addition, microcalorimetry of Tetrahymena could be a sensible, easy-to-use, and convenient method for monitoring the potential effects of rare earth elements on cells and the freshwater ecosystem.
Resumo:
Effects of water temperature (17, 21, 25, 30 and 35 degrees C) and body size (14.75-281.41 g initial body weight) on food consumption, growth, feed conversion, and dry matter content in orange-spotted grouper fed to satiation were investigated. The combined effect of temperature (T, degrees C) and body weight (W, g) on maximum food consumption (C-max, g/day) was described as: InCmax= -7.411+0.828 lnW+0.317T-0.004 7T(2), and the optimum feeding temperature was 33.9 degrees C. The combined effect of temperature and body weight on growth (G) was described as: InG= -4.461-0.208lnW+0.394T-0.006 3T(2). The optimum growth temperature was 31.4 degrees C, whereas overall growth rates were high at 25, 30 and 35 degrees C. Feed conversion efficiencies (FCE, %), increasing first and then decreasing with increasing temperature, averaged from 1.8 to 2.1 in terms of dry weight of food fish. The optimum temperature for FCE tended to be lower than that for growth or feeding. Dry matter content increased with both increasing water temperature (17, 25, 30 and 35 degrees C) and body weight, and the combined effect of temperature and body weight on dry matter content (DM, %) was described as: lnDM =3.232+0.01 4 lnW-0.004 4T+0.001 2TlnW.
Resumo:
A growth trial was conducted to estimate the optimum requirement of dietary available phosphorus (P) for black seabream (Sparus macrocephalus) in indoor net cages (1.5x1.0x1.0 m). Triplicate groups of black seabream (11.45 +/- 0.02 g) were fed diets containing graded levels (0.18, 0.36, 0.54, 0.72, 0.89 and 1.07%) of available P to satiation for 8 weeks. The basal diet (diet 1), containing 0.18% available P, was supplemented with graded levels of monosodium phosphate (NaH2PO4 2H(2)O) to formulate five experimental diets. The fish were fed twice daily (08:00 h and 16:00 h) and reared in seawater (salinity, 26-29 g l(-1)) at a temperature of 28 +/- 1 degrees C. Dissolved oxygen during the experiment was above 5 mg l(-1). The specific growth rate (SGR), weight gain (WG), feed efficiency (FE) and protein efficiency ratio (PER) were all significantly improved by dietary phosphorus up to 0.54% (P<0.05) and then leveled off beyond this level. Hepatosomatic index (HSI) was inversely correlated with dietary phosphorus levels (P< 0.05). Efficiency of P utilization stabled in fish fed diets containing 0.18%-0.54% available P and then decreased dramatically with further supplementation of dietary phosphorus. Body composition analysis showed that the whole-body lipid, ash, calcium and phosphorus contents were all significantly affected by dietary available P concentration (P<0.05), however, no significance were found in whole-body calcium/phosphorus (Ca/P) ratios among all the treatments (P>0.05). Dietary phosphorus levels also affected the mineralization of vertebrae, skin and scale (P<0.05). Ca/P ratios in vertebrae and scale were not influenced by dietary P supplementation, while skin Ca/P ratio increased statistically with dietary available P levels (quadratic effect, P<0.001). The blood chemistry analysis showed that dietary available P had distinct effects on enzyme activities of alkaline phosphatase (ALP) and plasma lysozyme (LSZ), as well as contents of triacyglycerol (TG) and total cholesterol (T-CHO) (P<0.05). Broken-line analysis showed maximum weight gain (WG) was obtained at dietary available P concentrations of 0.55%. Quadratic analysis based on P contents in whole fish, vertebrae or scale indicated that the requirements were 0.81, 0.87 and 0.88%, respectively. Signs of phosphorus deficiency were characterized by poor growth, slightly reduced mineralization and an increase in body lipid content. (C) 2008 Published by Elsevier B.V.
Resumo:
Photosynthetic activity during rehydration at four temperatures (5, 15, 25, 35 degrees C) was studied in a terrestrial, highly drought-tolerant cyanobacterium, Nostoc flagelliforme. At all the temperatures, the optimum quantum yield F-v/F-m increased rapidly within I It and then increased slowly during the process of rehydration. The increase in F-v/F-m at 25 and 35 degrees C was larger than that at 5 and 15 degrees C. In addition, the changes of initial intensity of fluorescence (F-0) and variable fluorescence (F-v) were more significant at 25 and 35 degrees C than those at 5 and 15 degrees C. Chlorophyll a content increased with the increase of temperature during the course of rehydration, with this being more pronounced at 25 and 35 degrees C. The photosynthetic rates at 25 and 35 degrees C were higher than those at 5 and 15 degrees C. Induction of chlorophyll fluorescence with sustained rewetting at 5 and 15 degrees C had two phases of transformation, whereas at 25 and 35 degrees C it had a third peak kinetic phase and showed typical chlorophyll fluorescence steps on rewetting for 24 h, representing a normal physiological state. A comparison of the chlorophyll fluorescence parameters, chlorophyll a content, and the chlorophyll fluorescence induction led to the conclusion that N. flagelliforme had a more rapid and complete recovery at 25 and 35 degrees C than that at 5 and 15 degrees C, although it could recover its photosynthetic activity at any of the four temperatures. (c) 2007 Published by Elsevier Ltd.
Resumo:
Feeding and growth traits of Cyprinus carpio and Cyprinus pellegrini (both at age-0) were compared in three experiment, in an attempt to analyze potential causes for the displacement of the native C. pellegrini in the Xingyun Lake, Yuxi, Yunan, China. Experiment I was conducted in water which fluctuated between 15 and 20 degrees C. Experiment II and III were conducted in a laboratory and water temperature was maintained between 20 degrees C and 25 degrees C, respectively. Three common trends were noted for all three experiments: (1) feeding rate of C. carpio was lower than that of C. pellegrini, and this difference was found to be significant in experiment I; (2) growth rate of C. carpio was higher than C. pellegrini, and the difference was found to be significant in experiment II; (3) food conversion efficiency and energy retention efficiency for C. carpio were higher than those of C. pellegrini, and significant differences were noted in experiment I and II. Since the growth period for fish in the Xingyun Lake generally occurs when water temperatures are between 15 and 25 degrees C, it can be suggested that C. carpio has advantages over C. pellegrini in growth and food utilization efficiency, and lower food consumption than C. pellegrini. These physiological traits of C. carpio might allow this species to be more resistant to food shortage and predation, and may be partially responsible for the displacement of C. pellegrini by C. carpio.
Resumo:
Although long chain alkenones (LCKs) occur widely in lacustrine sediments, their origin is not clear. Here, we report a lacustrine source, the non-calcifying species Chrysotila lamellosa Anand (Haptophyceae), collected and isolated from an inland saline water body, Lake Xiarinur (Inner Mongolia, China). Its alketione pattern is similar to those of coastal marine strains of C lamellosa,but the relationship between U-37(K') index and culture temperature for the lacustrine species is quite different from that of the coastal species. A significant feature of the alkenones in this strain of C lamellosa is a lack of C-38 methyl alkenones, which might be used to distinguish the species from the marine haptophyte species Emiliania huxleyi and Gephyrocapsa oceanica. The higher C-38 tetraunsaturated compound abundance might be another important feature for distinguishing the C lamellosa alkenone producer from the coastal species Isochrysis galbana. This alkenone distribution pattern has been detected in many lakes, which suggests that C lamellosa or a closely related species might be a very common alkenone precursor in lacustrine systems. We examined U-37(K') and U-37(K) values for C lamellosa as a function of culture temperature in a batch culture experiment. The calibration for U-37(K') vs. culture temperature (T) was U-37(K') = 0.0011 x T-2 - 0.0157 x T + 0.1057(n = 14, r(2) = 0.99) from 10 degrees C to 22 degrees C or U-37(K') = 0.0257 x T - 0.2608(n = 9, r(2) = 0.97) from 14 degrees C to 22 degrees C. U-37(K) vs. culture temperature was U-37(K) = 0 0377 x T - 0.5992(n = 14, r(2) = 0.98) from 10 degrees C to 22 degrees C. Our experiments show that the alkenone unsaturation index (U-37(K')) is strongly controlled by culture temperature and can be used for palaeoclimate reconstruction. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
An 8-week growth trial was carried out in a semi-recirculation system at 26 +/- 0.5 degrees C to investigate the optimal dietary carbohydrate-to-lipid (CHO:L) ratio for carnivorous Chinese longsnout catfish (Leiocassis longirostris Gunther). Triplicate tanks of fish were assigned to each of five isocaloric and isonitrogenous diets with different carbohydrate-to-lipid ratios (0.75, 1.48, 1.98, 2.99 and 5.07). The results showed that a higher specific growth rate (SGR) and feed rate (FR) were observed in the fish fed diet ratios of 1.98 CHO:L (P < 0.05). Overloading dietary carbohydrate (5.07 CHO:L ratio) caused skeletal malformations. Apparent digestibility of dry matter (ADC(d)) significantly increased with dietary CHO:L ratio (P < 0.05), while significantly higher apparent digestibility of protein (ADC(p)) and apparent digestibility of energy (ACD(e)) was observed only in the 1.98 CHO:L group (P < 0.05). Whole body contents of dry matter, lipid and energy significantly increased as the CHO:L ratio decreased (P < 0.05). The hepatosomatic index (HSI) was highest at 1.98 CHO:L ratio (P < 0.05). Highest dietary CHO:L ratio resulted in lower liver glycogen, liver lipid, plasma glucose and plasma triacylglycerol (P < 0.05), whereas there was no significant difference in plasma total cholesterol (P > 0.05). High dietary CHO:L ratio caused pathological changes in fish morphology and liver histology. Based on maximum growth, the optimal carbohydrate-to-lipid ratio was 1.98 for Chinese longsnout catfish.
Resumo:
A 65-day growth trial was conducted at 19.5 degrees C to determine the optimal dietary methionine for juvenile rockfish, Sebastes schlegeli. Semipurified diets were formulated to be isonitrogenous and isoenergetic. Fish meal was used as intact protein source and crystal amino acid was used as a part of dietary protein. Six experimental diets were formulated to contain 5.8, 10.8, 15.8, 20.8, 25.8 and 30.8 g kg(-1) dietary methionine. The results showed that dietary methionine significantly affected specific growth rate, weight gain, food conversion ratio, protein productive value (PPV), energy retention efficiency, carcass index and body composition. No significant difference was found in hepatosomatic index. The dietary methionine requirement for maximum growth was 13.7 g kg(-1) dry matter or 28.0 g kg(-1) of dietary protein when cystine content was 1.2 g kg(-1) dry matter.
Resumo:
The growth and energy budget for F-2 'all-fish' growth hormone gene transgenic common carp Cyprinus carpio of two body sizes were investigated at 29.2 degrees C for 21 days. Specific growth rate, feed intake, feed efficiency, digestibility coefficients of dry matter and protein, gross energy intake (I-E), and the proportion of I-E utilized for heat production (H-E) were significantly higher in the transgenics than in the controls. The proportion of I-E directed to waste products [faecal energy (F-E) and excretory energy loss (Z(E) + U-E) where Z(E) is through the gills and U-E through the kidney], and the proportion of metabolizable energy (M-E) for recovered energy (R-E) were significantly lower in the transgenics than in the controls. The average energy budget equation of transgenic fish was as follows: 100 I-E = 19.3 F-E + 6.0 (Z(E) + U-E) + 45.2 H-E + 29.5 R-E or 100 M-E = 60.5 H-E + 39.5 R-E. The average energy budget equation of the controls was: 100 I-E = 25.2 F-E + 7.4 (Z(E) + U-E) + 35.5 H-E + 31.9 R-E or 100 M-E = 52.7 H-E + 47.3 R-E. These findings indicate that the high growth rate of 'all-fish' transgenic common carp relative to their non-transgenic counterparts was due to their increased feed intake, reduced lose of waste productions and improved feed efficiency. The benefit of the increased energy intake by transgenic fish, however, was diminished by their increased metabolism.
Resumo:
Development of embryos and larvae in Ancherythroculter nigrocauda Yih et Woo (1964) and effects of delayed first feeding on larvae were observed after artificial fertilization. The fertilized eggs were incubated at an average temperature of 26.5 degrees C (range: 25.7-27) and the larvae reared at temperatures ranging from 21.8 to 28 degrees C. First cleavage was at 50 min, epiboly began at 7 h 5 min, heartbeat reached 72 per min at 24 h 40 min and hatching occurred at 43 h 15 min after insemination. Mean total length of newly hatched larvae was 4.04 +/- 0.03 mm (n = 15). A one-chambered gas bladder was observed at 70 h 50 min, two chambers occurred at 15 days, and scales appeared approximately 30 days after hatching. Larvae began to feed exogenously at day 4 post-hatch at an average temperature of 24 degrees C. Food deprivation resulted in a progressive atrophy of skeletal muscle fibres, deterioration of the larval digestive system and cessation of organ differentiation. Larval growth under food deprivation was significantly affected by the time of first exogenous feeding. Starved larvae began to shrink, with negative growth from day 6 post-hatch. The point of no return (PNR) was reached at day 11 after hatching. Mortality of starved larvae increased sharply from day 12 after hatching.
Resumo:
The Asian yellow pond turtle, Mauremys mutica (Cantor), is a potential aquaculture target in China owing to the higher values for food and remedy than other species of turtle. In this study, color and morphological changes of fertilized eggs were observed during embryogenesis, and the effects of incubation temperature on embryonic development were analyzed. Both calcium layer and membrane layer are thicker in the middle portion of egg-shell than that in the terminal portion, and become thinner after embryo hatching than before embryonic development. Significant change in the white spot and subsequent white ring on the eggshell occurs during embryonic development. Of five different incubation temperatures used to investigate the effects of incubation temperatures on embryonic development, 29.0 +/- 0.5 degrees C was optimal for embryo survival and development. Moreover, the incubation temperature of 33.0 +/- 0.5 degrees C was harmful effect to embryonic development. The data provide important and useful information for husbandry and management of the Asian yellow pond turtle. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Our studies investigated the physico-chemical properties of alkaline phosphatase excreted by D. magna. This cladoceran mainly released alkaline phosphatase, though it also released a small amount of acid phosphatase. The alkaline phosphatase showed a broad pH optimum (8.05-10.0), and had a broad optimum temperature (30-35 degrees C) with a temperature coefficient (Q(10)) of 2.45. The K-m of the enzyme is 0.15 +/- 0.02 mM when p-nitrophenyl phosphate is used as a substrate, and the V-max is 0.43 +/- 0.01 mu M pNP mg(-1) DW h(-1). Even though alkaline phosphatase had been incubated in chloroform saturated with WC medium for 13 days, its activity was 54% that of the original. The enzyme was strongly inactivated by EDTA, and appeared to be zinc dependent. The alkaline phosphatase activity remained constant when D. magna was fed different quantities of Chlorella sp. The sensitivity of D. magna phosphatase activity to phosphate was time-dependent. During the first 16 hrs, the enzyme was insensitive to phosphate addition, after 24 hrs incubation the enzyme became sensitive to phosphate addition.
Resumo:
Triplicate groups of gibel carp Carassius auratus gibelio Bloch (initial body weight: 4.89 g) were fed for 8 weeks at 24.8-30.8 degrees C with nine isonitrogenous and isoenergetic diets. The control diet (F1) used white fishmeal (FM) as the sole protein source. In the other eight diets (F2-F9), 40.5-100% of FM protein was substituted by poultry by-product meal (PBM) at 8.5% increments. The specific growth rate (SGR), feed efficiency ratio, protein efficiency ratio, protein retention efficiency and energy retention rate for fish fed PBM diets (F2-F9) were all higher, but not always significantly, than those for fish fed F1. All apparent digestibility coefficients for fish fed PBM diets were lower than those for fish fed F1. Fish fed F1 had a significantly higher hepatosomatic index value than fish fed PBM diets (P < 0.05). No significant (P > 0.05) effect of diet was found in whole-body moisture and fat content. Whole-body protein and energy content for fish fed PBM diets were slightly higher than that for fish fed F1. The optimal replacement level of FM by PBM was estimated by second-order polynomial regression to be 66.5% in protein.
Resumo:
RP-HPLC analysis for low molecular weight organic acids in soil solution has been optimized. An Atlantis (TM) C-18 column was used for the analyses. An optimal determination for eleven organic acids in soil solution was found at room temperature (25 degrees C) and 220 nm detection wavelength, with a mobile phase of 10 mM KH2PO4 -CH3OH (955, pH 2.7), a flow rate of 0.8 mL/min and 10 mu L sample size. The detection limits ranged 3.2-619 ng/mL, the coefficients of variation ranged 1.3-4.6%, and the recoveries ranged 95.6-106.3% for soil solution with standard addition on the optimal conditions proposed.
Resumo:
The icefish (Neosalanx taihuensis) of Lake Chaohu, China, foraged almost exclusively on crustacean zooplankton in both spring and summer. The icefish showed diurnal feeding periodicity, with peak feeding in the morning. No food was observed in icefish guts collected at night. Our results indicate that that the icefish was a particulate feeder and light intensity greatly affected its foraging on zooplankton. Daily consumption of zooplankton by icefish varied significantly both diurnally and among seasons, which ranged from 0.22 to 2.23 g (wet weight) per 100 g wet fish weight at temperatures between 16.3 degrees C (spring) and 28.8 degrees C (summer).