106 resultados para vegetation fragmentation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chang-Fu Wang, Xian-Qiu Ren, and Run-Lin Xu (2010) Composition, abundance, and diversity of the Peracarida on different vegetation types in the Qi'ao-Dan'gan Island Mangrove Nature Reserve on Qi'ao Island in the Pearl River estuary, China. Zoological Studies 49(5): 608-615. Almost nothing is known about the Peracarida in the Pearl River estuary. This is the 1st report to study the composition, abundance, and diversity of the Peracarida in the Qi'ao-Dan'gan I. Mangrove Nature Reserve on Qi'ao I., in the Pearl River estuary, southern China. Bimonthly samplings were carried out in 3 representative vegetation types (mangrove arbor, emergent plants, and seaweed) for 2 yr. Using a Peterson grab, 1940 individuals (id.) were collected in total, including 11 species of 6 genera, 5 families, and 3 orders (Amphipoda, Isopoda, and Tanaidacean). Discapseudes mackiei Bamber 1997 was the dominant species with the highest density of 1,432 incl./m(2). The effect of temperature on the abundance of Peracarida was significant (p < 0.01), and the optimum temperature was 22-23 degrees C in both the mangrove arbor and seaweed. The results showed that the abundance of the Peracarida was higher in the mangrove arbor, while the diversity, especially Amphipoda diversity, was higher in the seaweed. In contrast, emergent plants provided no suitable habitats for the Peracarida. http://zoolstud.sinica.edu.tw/Journals/49.5/608.pdf

Relevância:

20.00% 20.00%

Publicador:

Resumo:

在青藏高原中国科学院海北高寒草甸生态系统定位研究站对金露梅高寒灌丛草场植被开展了长期不同放 牧强度试验,分别在短期(4 年) 、中期(11 年) 和长期(18 年) 放牧阶段研究不同放牧干扰强度对草地植物物种多样 性、群落结构、地上生物量和草场质量的影响。研究表明,在不同放牧阶段,随着放牧强度增加植物群落的高度和 盖度都降低。在中期放牧干扰阶段,物种多样性指数和均匀度指数随着放牧强度增加呈现典型的单峰曲线模式; 在长期放牧干扰阶段,随着放牧强度增加,占优势地位的灌木和禾草被典型杂类草替代,其中的重度放牧干扰简化 了高寒灌丛植被群落结构,减少了地上现存生物量,特别是可食优良牧草生物量。植被对放牧的响应除了与放牧 强度和放牧时间阶段密切相关外,还与该地区水热条件的变化有一定的相关性。针对长期放牧干扰的反应特性可 将金露梅灌丛草场中植物划分为增加型、敏感型、忍耐型和无反应型4 种类型。除了丰富度指数、多样性指数和均 匀度指数外,其它一些特征参数并不支持著名的中度干扰假说。本研究发现,长期重度放牧促进了青藏高原高寒 草地退化,适度放牧有利于高寒灌丛草场的生物多样性保护和牧草利用;“取半留半”的放牧原则在青藏高原草场 放牧管理实践中值得推荐,它将有利于防止草场退化,提高牧草利用率和维持较高的生物多样性。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research was conducted on alpine meadow site at Menyuan county, Qinghai Province, People's Republic of China to determine the effects of native, subterranean rodent of Qinghai-Tibet grasslands, the plateau zokors (Myospalax baileyi), on seasonal above-and below-ground plant biomass, plant species diversity and productivity. Both total peaks of above-and below-ground biomass were the greatest (413.600 g/m~2 and 2297.502 g/m~2) in the patch no any plateau zokors colonized by plateau zokors over 10 years in August and October, respectively. Both above-and below-ground biomass were significantly increased in the patches where plateau zokors were removed or the burrow systems were abandoned for five years compared to the patches plateau zokors colonized over 10 years. However, both above-and below-ground biomass in abandoned patches were significantly lower than that in uncolonized patches. Monocotyledonous biomass was reduced greatly, but the non-palatable dicots were significantly increased in colonized patches. The palatable biomass of monocots and dicots were increased in abandoned patches. Total plant species diversity was the greatest in uncolonized patchesand least in abandoned patch. The total net primary production in colonized patches was reduced by 68.98% compared with uncolonized patches. Although the patches were without any plateau zokors disturbance for fives years, the total net primary production just reached 58.69% of the uncolonized patches. The above-ground net primary production in abandoned patches increased 28.74% and the below-ground increased 54.91% compared with the colonized patches. We suggest that plateau zokor-induced changes in plant above- and below-ground biomass and species diversity may lead to further alterations of nutrient cycling and trophic dynamics in this alpine meadow ecosystem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Through 2-3-year (2003-2005) continuous eddy covariance measurements of carbon dioxide and water vapor fluxes, we examined the seasonal, inter-annual, and inter-ecosystem variations in the ecosystem-level water use efficiency (WUE, defined as the ratio of gross primary production, GPP, to evapotranspiration, ET) at four Chinese grassland ecosystems in the Qinghai-Tibet Plateau and North China. Representing the most prevalent grassland types in China, the four ecosystems are an alpine swamp meadow ecosystem, an alpine shrub-meadow ecosystem, an alpine meadow-steppe ecosystem, and a temperate steppe ecosystem, which illustrate a water availability gradient and thus provide us an opportunity to quantify environmental and biological controls on ecosystem WUE at different spatiotemporal scales. Seasonally, WUE tracked closely with GPP at the four ecosystems, being low at the beginning and the end of the growing seasons and high during the active periods of plant growth. Such consistent correspondence between WUE and GPP suggested that photosynthetic processes were the dominant regulator of the seasonal variations in WUE. Further investigation indicated that the regulations were mainly due to the effect of leaf area index (LAI) on carbon assimilation and on the ratio of transpiration to ET (T/ET). Besides, except for the swamp meadow, LAI also controlled the year-to-year and site-to-site variations in WUE in the same way, resulting in the years or sites with high productivity being accompanied by high WUE. The general good correlation between LAI and ecosystem WUE indicates that it may be possible to predict grassland ecosystem WUE simply with LAI. Our results also imply that climate change-induced shifts in vegetation structure, and consequently LAI may have a significant impact on the relationship between ecosystem carbon and water cycles in grasslands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study attempts to model alpine tundra vegetation dynamics in a tundra region in the Qinghai Province of China in response to global warming. We used Raster-based cellular automata and a Geographic Information System to study the spatial and temporal vegetation dynamics. The cellular automata model is implemented with IDRISI's Multi-Criteria Evaluation functionality to simulate the spatial patterns of vegetation change assuming certain scenarios of global mean temperature increase over time. The Vegetation Dynamic Simulation Model calculates a probability surface for each vegetation type, and then combines all vegetation types into a composite map, determined by the maximum likelihood that each vegetation type should distribute to each raster unit. With scenarios of global temperature increase of I to 3 degrees C, the vegetation types such as Dry Kobresia Meadow and Dry Potentilla Shrub that are adapted to warm and dry conditions tend to become more dominant in the study area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An inventory of isolated tree stands surrounded by desert pastures in Southern Tibet (A.R. Xizang, China) revealed more than 50 sites with vigorous trees of Juniperus convallium Rehder & E.H. Wilson and Juniperus tibetica Kom and additional more than 10 records where juniper trees had been destroyed between 1959-1976. The tree stands are not restricted to any specific habitat, and occur within an area stretching 650 km westwards from the current forest border of Southern Tibet. The trees are religious landmarks of the Tibetan Buddhists. The highest trees were found at an elevation of 4,860 m. Vegetation records, rainfall correlations and temperature data collected by local climate stations and successful reforestation trials since 1999 indicate that forest relicts fragmented through human interference could regenerate if current cattle grazing and deforestation practices are halted. The drought line of Juniperus forests in Southern Tibet is approximately 200-250 mm/a. A first pollen diagram from Lhasa shows forest decline associated with the presence of humans since at least 4,600 yr BP. The currently degraded commons developed in the last 600 yr. To date, no findings of remains of ancient forests in the Central Tibetan Highlands of the Changtang have been reported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The disjunct distribution of forests in the Qinghai-Tibetan Plateau (QTP) and adjacent Helan Shan and Daqing Shan highlands provides an excellent model to examine vegetation shifts, glacial refugia and gene flow of key species in this complex landscape region in response to past climatic oscillations and human disturbance. In this study, we examined maternally inherited mitochondrial DNA (nad1 intron b/c and nad5 intron 1) and paternally inherited chloroplast DNA (trnC-trnD) sequence variation within a dominant forest species, Picea crassifolia Kom. We recovered nine mitotypes and two chlorotypes in a survey of 442 individuals from 32 populations sampled throughout the species' range. Significant mitochondrial DNA population subdivision was detected (G(ST) = 0.512; N-ST = 0.679), suggesting low levels of recurrent gene flow through seeds among populations and significant phylogeographical structure (N-ST > GST, P < 0.05). Plateau haplotypes differed in sequence from those in the adjacent highlands, suggesting a long period of allopatric fragmentation between the species in the two regions and the presence of independent refugia in each region during Quaternary glaciations. On the QTP platform, all but one of the disjunct populations surveyed were fixed for the same mitotype, while most populations at the plateau edge contained more than one haplotype with the mitotype that was fixed in plateau platform populations always present at high frequency. This distribution pattern suggests that present-day disjunct populations on the QTP platform experienced a common recolonization history. The same phylogeographical pattern, however, was not detected for paternally inherited chloroplast DNA haplotypes. Two chlorotypes were distributed throughout the range of the species with little geographical population differentiation (G(ST) = N-ST = 0.093). This provides evidence for highly efficient pollen-mediated gene flow among isolated forest patches, both within and between the QTP and adjacent highland populations. A lack of isolation to pollen-mediated gene flow between forests on the QTP and adjacent highlands is surprising given that the Tengger Desert has been a geographical barrier between these two regions for approximately the last 1.8 million years.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To initially describe vegetation structure and spatial variation in plant biomass in a typical alpine wetland of the Qinghai-Tibetan Plateau, net primary productivity and vegetation in relationship to environmental factors were investigated. In 2002, the wetland remained flooded to an average water depth of 25 cm during the growing season, from July to mid-September. We mapped the floodline and vegetation distribution using GPS (global positioning system). Coverage of vegetation in the wetland was 100%, and the vegetation was zonally distributed along a water depth gradient, with three emergent plant zones (Hippuris vulgaris-dominated zone, Scirpus distigmaticus-dominated zone, and Carex allivescers-dominated zone) and one submerged plant zone (Potamogeton pectinatus-dominated zone). Both aboveground and belowground biomass varied temporally within and among the vegetation zones. Further, net primary productivity (NPP) as estimated by peak biomass also differed among the vegetation zones; aboveground NPP was highest in the Carex-dominated zone with shallowest water and lowest in the Potamogeton zone with deepest water. The area occupied by each zone was 73.5% for P. pectinatus, 2.6% for H. vulgaris, 20.5% for S. distigmaticus, and 3.4% for C. allivescers. Morphological features in relationship to gas-transport efficiency of the aerial part differed among the emergent plants. Of the three emergent plants, H. vulgaris, which dominated in the deeper water, showed greater morphological adaptability to deep water than the other two emergent plants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Whether climate change will turn cold biomes from large long-term carbon sinks into sources is hotly debated because of the great potential for ecosystem-mediated feedbacks to global climate. Critical are the direction, magnitude and generality of climate responses of plant litter decomposition. Here, we present the first quantitative analysis of the major climate-change-related drivers of litter decomposition rates in cold northern biomes worldwide. Leaf litters collected from the predominant species in 33 global change manipulation experiments in circum-arctic-alpine ecosystems were incubated simultaneously in two contrasting arctic life zones. We demonstrate that longer-term, large-scale changes to leaf litter decomposition will be driven primarily by both direct warming effects and concomitant shifts in plant growth form composition, with a much smaller role for changes in litter quality within species. Specifically, the ongoing warming-induced expansion of shrubs with recalcitrant leaf litter across cold biomes would constitute a negative feedback to global warming. Depending on the strength of other (previously reported) positive feedbacks of shrub expansion on soil carbon turnover, this may partly counteract direct warming enhancement of litter decomposition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The vegetation of the northeast Qinghai-Tibetan Plateau is dominated by alpine meadow and desert-steppe with sparse forests scattered within it. To obtain a better understanding of the phylogeography of one constituent species of the forests in this region, we examined chloroplast trnT-trnF and trnS-trnG sequence variation within Juniperus przewalskii, a key endemic tree species. Sequence data were obtained from 392 trees in 20 populations covering the entire distribution range of the species. Six cpDNA haplotypes were identified. Significant population subdivision was detected (G(ST) = 0.772, N-ST = 0.834), suggesting low levels of recurrent gene flow among populations and significant phylogeographic structure (N-ST > G(ST), P < 0.05). Eight of the nine disjunct populations surveyed on the high-elevation northeast plateau were fixed for a single haplotype (A), while the remaining, more westerly population, contained the same haplotype at high frequency together with two low frequency haplotypes (C and F). In contrast, most populations that occurred at lower altitudes at the plateau edge were fixed or nearly fixed for one of two haplotypes, A or E. However, two plateau edge populations had haplotype compositions different from the rest. In one, four haplotypes (A, B, D and E) were present at approximately equivalent frequencies, which might reflect a larger refugium in the area of this population during the last glacial period. Phylogenetic analysis indicated that the most widely distributed haplotype A is not ancestral to other haplotypes. The contrasting phylogeographic structures of the haplotype-rich plateau edge area and the almost haplotype-uniform plateau platform region indicate that the plateau platform was recolonized by J. przewalskii during the most recent postglacial period. This is supported by the findings of a nested clade analysis, which inferred that postglacial range expansion from the plateau edge followed by recent fragmentation is largely responsible for the present-day spatial distribution of cpDNA haplotypes within the species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We measured methane (CH4) emissions in the Luanhaizi wetland, a typical alpine wetland on the Qinghai-Tibetan Plateau, China, during the plant growth season (early July to mid-September) in 2002. Our aim was to quantify the spatial and temporal variation of CH4 flux and to elucidate key factors in this variation. Static chamber measurements of CH4 flux were made in four vegetation zones along a gradient of water depth. There were three emergent-plant zones (Hippuris-dominated; Scirpus-dominated; and Carex-dominated) and one submerged-plant zone (Potamogeton-dominated). The smallest CH4 flux (seasonal mean = 33.1 mg CH4 m(-2) d(-1)) was, observed in the Potamogeton-dominated zone, which occupied about 74% of the total area of the wetland. The greatest CH4 flux (seasonal mean = 214 mg CH4 m(-2) d(-1)) was observed in the Hippuris-dominated zone, in the second-deepest water area. CH4 flux from three zones (excluding the Carex-dominated zone) showed a marked diurnal change and decreased dramatically under dark conditions. Light intensity had a major influence on the temporal variation in CH4 flux, at least in three of the zones. Methane fluxes from all zones increased during the growing season with increasing aboveground biomass. CH4 flux from the Scirpus-dominated zone was significantly lower than in the other emergent-plant zones despite the large biomass, because the root and rhizome intake ports for CH4 transport in the dominant species were distributed in shallower and more oxidative soil than occupied in the other zones. Spatial and temporal variation in CH4 flux from the alpine wetland was determined by the vegetation zone. Among the dominant species in each zone, there were variations in the density and biomass of shoots, gas-transport system, and root-rhizome architecture. The CH4 flux from a typical alpine wetland on the Qinghai-Tibetan Plateau was as high as those of other boreal and alpine wetlands. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The impact of burrows constructed by plateau zokors Myospalax fontanierii (Milne-Edwards, 1867) on alpine meadow vegetation on the Qinghai-Xizang (Tibetan) plateau was investigated. Plant samples taken from quadrats directly over active zokor burrows, back-filled burrows, adjacent burrow controls, and random sites from a field, in which no burrows or mounds occurred were compared. The biomass of plants (below- and above-ground) directly over shallow active burrows was significantly lower than on control plots. This reduction in biomass was not significantly different than that between deep active burrows and control plots. There were no significant differences between above- and below-ground plant biomass on areas perpendicular to active burrows when compared to random sites. Back-filling soil in burrows could promote the growth of above-ground monocotyledonous plants. However, the burrowing activities of zokors had a negative effect on biomass of dicotyledonous plants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The VEGETATION (VGT) sensor in SPOT 4 has four spectral bands that are equivalent to Landsat Thematic Mapper (TM) bands (blue, red, near-infrared and mid-infrared spectral bands) and provides daily images of the global land surface at a 1-km spatial resolution. We propose a new index for identifying and mapping of snow ice cover, namely the Normalized Difference Snow/Ice Index (NDSII), which uses reflectance values of red and mid-infrared spectral bands of Landsat TM and VGT. For Landsat TM data, NDSII is calculated as NDSIITM =(TM3 -TM5)/(TM3 +TM5); for VGT data, NDSII is calculated as NDSIIVGT =(B2- MIR)/(B2 + MIR). As a case study we used a Landsat TM image that covers the eastern part of the Qilian mountain range in the Qinghai-Xizang (Tibetan) plateau of China. NDSIITM gave similar estimates of the area and spatial distribution of snow/ice cover to the Normalized Difference Snow Index (NDSI=(TM2-TM5)/(TM2+TM5)) which has been proposed by Hall et al. The results indicated that the VGT sensor might have the potential for operational monitoring and mapping of snow/ice cover from regional to global scales, when using NDSIIVGT.