101 resultados para trace amounts


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multitracer technique was used to study the uptake and distribution of some relatively long half-life radionuclides Be, Na, Mn, Co, Sc to growing cucumber (Cucumis Sativus L.) with two different treatments. In Hoagland solution, only Mn-54 and Co-60 accumulated in the every part of plants. Mn-54, Co-60 and other radionuclides were absorbed in distilled water. The results indicate that there were major differences in the accumulation of trace elements between the two different treatments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Characterization of Platinum Group Elements (PGE) has been applied to earth, space and environmental sciences. However, all these applications are based on a basic prerequisite, i.e. their concentration or ratio in the research objects can be accurately and precisely determined. In fact, development in these related studies is a great challenge to the analytical chemistry of the PGE because their content in the geological sample (non-mineralized) is often extremely low, range from ppt (10~(-12)g/g) to ppt (10~(-9)g/g). Their distribution is highly heterogeneous, usually concentrating in single particle or phase. Therefore, the accurate determination of these elements remains a problem in analytical chemistry and it obstructs the research on geochemistry of PGE. A great effort has been made in scientific community to reliable determining of very low amounts of PGE, which has been focused on to reduce the level of background in used reagents and to solve probable heterogeneity of PGE in samples. Undoubtedly, the fire-assay method is one of the best ways for solving the heterogeneity, as a large amount of sample weight (10-50g) can be hold. This page is mainly aimed at development of the methodology on separation, concentration and determination of the ultra-trace PGE in the rock and peat samples, and then they are applied to study the trace of PGE in ophiolite suite, in Kudi, West Kunlun and Tunguska explosion in 1908. The achievements of the study are summarized as follows: 1. A PGE lab is established in the Laboratory of Lithosphere Tectonic Evolution, IGG, CAS. 2. A modified method of determination of PGE in geological samples using NiS Fire-Assay with inductively coupled plasma-mass spectrometry (ICP-MS) is set up. The technical improvements are made as following: (1) investigating the level of background in used reagents, and finding the contents of Au, Pt and Pd in carbonyl nickel powder are 30, 0.6 and 0.6ng/g, respectively and 0.35, 7.5 and 6.4ng, respectively in other flux, and the contents of Ru, Rh, Os in whole reagents used are very low (below or near the detection limits of ICP-MS); (2) measuring the recoveries of PGE using different collector (Ni+S) and finding 1.5g of carbonyl nickel is effective for recovering the PGE for 15g samples (recoveries are more than 90%), reducing the inherent blank value due to impurities reagents; (3) direct dissolving nickel button in Teflon bomb and using Te-precipitation, so reducing the loss of PGE during preconcentration process and improving the recoveries of PGE (above 60% for Os and 93.6-106.3% for other PGE, using 2g carbonyl nickel); (4) simplifying the procedure of analyzing Osmium; (5)method detection limits are 8.6, 4.8, 43, 2.4, 82pg/g for 15g sample size ofRu, Rh, Pd, Ir, Pt, respectively. 3. An analytical method is set up to determine the content of ultra-trace PGE in peat samples. The method detection limits are 0.06, 0.1, 0.001, 0.001 and 0.002ng/mL for Ru, Rh, Pd, Ir and Pt, respectively. 4. Distinct anomaly of Pd and Os are firstly found in the peat sampling near the Tunguska explosion site, using the analytical method. 5. Applying the method to the study on the origin of Tunguska explosion and making the following conclusions: (1) these excess elements were likely resulted from the Tunguska Cosmic Body (TCB) explosion of 1908. (2) The Tunguska explosive body was composed of materials (solid components) similar to C1 chondrite, and, most probably, a cometary object, which weighed more than 10~7 tons and had a radius of more than 126 m. 6. The analysis method about ultra-trace PGE in rock samples is successfully used in the study on the characteristic of PGE in Kudi ophiolite suite and the following conclusions are made: (1) The difference of the mantle normalization of PGE patterns between dunite, harzburgite and lherzolite in Kudi indicates that they are residual of multi-stage partial melt of the mantle. Their depletion of Ir at a similar degree probably indicates the existence of an upper mantle depleted Ir. (2) With the evolution of the magma produced by the partial melt of the mantle, strong differentiation has been shown between IPGE and PPGE; and the differentiation from pyroxenite to basalt would have been more and more distinct. (3) The magma forming ophiolite in Kudi probably suffered S-saturation process.