127 resultados para stars: neutron


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the isospin- and momentum-dependent transport model IBUU04, the transverse momentum distributions of the free neutron-proton ratio in the Sn-132+(124) Sn reaction system at mid-central collisions with beam energies of 400/A MeV, 600/A MeV and 800/A MeV are studied by using two different symmetry energies. It is found that the free neutron-proton ratio as a function of the transverse momentum at the mid-rapidity is very sensitive to the density dependency of the symmetry energy especially at incident energies around 400/AMeV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Within a transport model it is shown that the neutron/proton ratio of squeezed-out nucleons perpendicular to the reaction plane, especially at high transverse momenta, in heavy-ion reactions induced by high energy neutron-rich nuclei can be a useful tool for studying the high density behavior of the nuclear symmetry energy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The proton and neutron S-1(0), pairing gaps and their isospin dependence in isospin asymmetric nuclear matter have been studied by the isospin dependent Brueckner-Hartree-Fock approach and the BCS theory. We have focused on investigating and discussing the effect of three-body force. The calculated results indicate that as the isospin asymmetry increases, the density range of the S-1(0) neutron superfluidity is narrowed slightly and the maximum value of the neutron pairing gap increases 9 while the density domain for the proton superfluidity enlarges rapidly and the peak value of the proton gap decreases remarkably. The three-body force turns out to affect only weakly the neutron S-1(0) superfluidity and its isospin dependence, i. e., it leads to a small reduction of the neutron S-1(0) paring gap. However, the three-body force not only reduces largely the strength of the proton S-1(0) gaps at high densities in highly asymmetric nuclear matter but also suppresses strongly the density domain for the proton S-1(0) superfluidity phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The light calibration system is one of the key components of Neutron Wall detector. It is used to calibrate the electronics and to monitor the long-term stability of the detector modules. With the detaile investigations, a calibration system with high-power LED (3W) driven by the fast pulses has been carried out. It is also tested together with the detector module of the Neutron Wall and the result of the preliminary calibration demonstrates that it fulfills the needs. It's a new design proposal to the light calibration system of the fast scintillator detector.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the S-1(0) neutron and proton superfluidity in isospin-asymmetric nuclear matter. We have concentrated on the isospin dependence of the pairing gaps and the effect of a microscopic three-body force. It is found that as the isospin asymmetry goes higher, the neutron S-1(0) superfluid phase shrinks gradually to a smaller density domain, whereas the proton one extends rapidly to a much wider density domain. The three-body force turns out to weaken the neutron S-1(0) superfluidity slightly, but it suppresses strongly the proton S-1(0) superfluidity at high densities in nuclear matter with large isospin asymmetry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the average property of the isospin effect of reaction induced by halo-neutron nuclei He-8 and He-10 in the intermediate energy heavy ion collisions using the isospin-dependent quantum molecular dynamics model (IQMD). This study is based on the extended neutron density distribution for the halo-neutron nuclei, which includes the average property of the isospin effect-of reaction mechanism and loose inner structure. The extended neutron density distribution brings an important isospin. effect into the average property of reaction mechanism because the interaction potential and nucleon-nucleon(N-N) cross section in IQMD model depend sensitively on the density distribution of colliding system. In order to see clearly the average properties of reaction mechanism induced by halo-neutron nuclei we also compare the results for the neutron-halo colliding systems with those for the corresponding stable colliding systems under the same incident channel condition. We found that the extended density distribution for the neutron-halo projectile brings an important isospin effect to the reaction mechanism, which leads to the decrease of nuclear stopping R, yet induces obvious increase of the neutron-proton ratio of nucleon emissions and isospin fractionation ratio for all beam energies studied in this work, compared to the corresponding stable colliding system. In this case, nuclear stopping, the neutron-proton ratio of nucleon emissions and isospin fractionation ratio induced by halo-neutron nuclei can be used as possible probes for studying the average property of the isospin effect of reaction mechanism and extracting the information of symmetry potential and in-medium N-N cross section by the neutron-halo nuclei in heavy ion collisions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In terms of the isospin-dependent quantum molecular dynamics model (IQMD), important isospin effect in the halo-neutron nucleus induced reaction mechanism is. investigated, and consequently, the symmetrical potential form is extracted in the intermediate energy heavy ion collision. Because the interactive potential and in-medium nucleon-nucleon (N-N) cross section in the IQMD model sensitively depend on the density distribution of the colliding system, this type of study is much more based on the extended density distribution with a looser inner nuclear structure of the halo-neutron nucleus. Such a density distribution includes averaged characteristics of the isospin effect of the reaction mechanism and the looser inner nuclear structure. In order to understand clearly the isospin effect of the halo-neutron nucleus induced reaction mechanism, the effects caused by the neutron-halo nucleus and by the stable nucleus with the same mass are compared under the same condition of the incident channel. It is found that in the concerned beam energy region, the ratio of the emitted neutrons and protons and the ratio of the isospin fractionations in the neutron-halo nucleus case are considerably larger than those in the stable nucleus case. Therefore, the information of the symmetry potential in the heavy ion collision can be extracted through such a procedure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The neutron-rich nucleus He-8 is selected by RIBLL from the breakup of 50MeV/u C-13 on be target at HIRFL. The 2n-removal and 4n-removal cross section of He-8 was measured by using the transmission method. The point that He-4 is He-8 core can be reduced from the experiment data via the Ogawa's theory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The double neutron-proton differential transverse flow taken from two reaction systems using different isotopes of the same element is studied at incident beam energies of 400 and 800 MeV/nucleon within the framework of an isospin- and momentum-dependent hadronic transport model IBUU04. The double differential flow is found to retain about the same sensitivity to the density dependence of the nuclear symmetry energy as the single differential flow in the more neutron-rich reaction. Because the double differential flow reduces significantly both the systematic errors and the influence of the Coulomb force, it is thus more effective probe for the high-density behavior of the nuclear symmetry energy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the isospin- and momentum-dependent transport model IBUU04, we investigated the neutron-proton differential flow in the (132) Sn + (124) Sn mid-central collisions at beam energies of 400MeV/A, 600MeV/A and 800MeV/A by adopting two different symmetry energies. It was found that the neutron-proton differential flow as a function of rapidity is very sensitive to the density dependence of symmetry energy, especially at incident energies around 400MeV/A

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the construction of the neutron detection wall at the external target position on Heavy Ion Research Facility in Lanzhou-Cooling Storage Ring (HIRFL-CSR), it will be possible to detect high energy neutron. A BUU model is applied to simulate the flow in both symmetric (Ni+Ni, Pb+Pb) and asymmetric(Pb+Ni) systems. It is shown that at above several hundreds MeV/u, the flow signals are very obvious and depend clearly on the centrality of the collisions. Based on the products in the forward angle less than 20 degrees, the simulation also reveals that the determination of the reaction plane and the selection of the impact parameter, both of which are essential in the flow measurement, are well implemented. The double event and its influence on the determination of the neutron flow are also simulated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the average property of the isospin effects of reaction mechanism induced by neutron-halo nuclei within the isospin-dependent quantum molecular dynamics model. We find that the extended neutron density distribution for the neutron-halo projectile brings an important isospin effect into the reaction mechanism, which induces the decrease of nuclear stopping R; however, it induces the obvious increases of the neutron-proton ratio of nucleon emissions (n/p)(nucl) for all of the beam energies in this work, compared to the same mass stable colliding system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We extend the Brueckner-Hartree-Fock (BHF) approach to include the three-body force (TBF) rearrangement contribution in calculating the neutron and proton single particle (s.p.) properties in isospin asymmetric nuclear matter. We investigate the TBF rearrangement effect on the momentum-dependence of neutron and proton s.p. potentials, the isospin splitting and especially its density dependence of the neutron and proton effective masses, and the isospin symmetry potential in neutron-rich nuclear matter by adopting the realistic Argonne V-18 two-body nucleon-nucleon interaction supplemented with a microscopic TBF. We find that at low densities, the TBF rearrangement effect is fairly weak, whereas the TBF induces a significant rearrangement effect on the s.p. properties at high densities and large momenta. The TBF rearrangement contribution to s.p. potential is shown to be repulsive, and it reduces considerably the attraction of the BHF s.p. potential. The repulsion from the TBF rearrangement turns out to be strongly momentum dependent at high densities and high momenta. As a consequence, it enhances remarkably the momentum dependence of the proton and neutron s.p. potentials and reduces the neutron and proton effective masses. At low densities, the TBF rearrangement effect on symmetry potential is almost negligible, while at high densities, it enlarges sizably the symmetry potential. At high enough densities, it may even change the high-momentum behavior of symmetry potential. In both cases, with and without including the TBF rearrangement contribution, the predicted neutron effective mass is larger than the proton one in neutron-rich matter within the BHF framework; i.e., the predicted isospin splitting of the proton and neutron effective masses in neutron-rich matter is such that m(n)(*)>= m(p)(*), in agreement with the recent Dirac-BHF predictions. The TBF rearrangement contribution reduces remarkably the magnitude of the proton-neutron effective mass splitting at high densities. At high enough densities, inclusion of the TBF rearrangement contribution even suppresses almost completely the effective mass splitting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Within the Boltzmann-Langevin equation, the neutron cluster production cross sections in the reactions induced by Be-14, He-8, He-6, Li-11, B-17, Be-11, C-19 on C-12 at 35MeV/u were studied. The experimental data for (4)n production cross section from Be-14+C-12 at 35MeV/u can be reproduced. It is found that the production cross section of neutron cluster is large in the reaction that the projectile has more halo nucleons. And the projectiles with big mass number are easy to produce the neutron cluster, when they have the same number of halo nucleons. The neutron cluster is probably mainly from the halo nucleons of projectile.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The beta(+)/EC decay of doubly odd Ir-176 has been investigated using Nd-146(Cl-35, 5n gamma)Ir-176 heavy ion fusion evaporation reaction at 210MeV bombarding energy. With the aid of a helium-jet recoil fast tape transport system, the reaction products were transported to a low-background location for measurements. Based on the data analysis, the previously published gamma rays in Ir-176 decay were proved, moreover, 3 new levels and 10 new gamma rays were assigned to Ir-176 decay. The new level scheme of Os-176 with low excitation energy has been established. The time spectra of typical gamma rays clearly indicate a long-lived low-spin isomer in Ir-176 nuclide.