97 resultados para solid state fermentation


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The aggregation slate of polyimide in solution and in the solid state were studied using the NMR and fluorescence techniques. The experiment results show that the decay of spin-spin relaxation of polyimides with concentration can be described as a single exponential, biexponential, triexponential, biexponential profile. Meanwhile, the intensities of fluorencence spectra increase rapidly with the concentration, and some peaks have a red-shift. Based upon these experiment results, it can be concluded that polyimide in solution is very flexible, and there are several critical concentrations at which polyimide has distinctly different aggregation states. The existence of intermolecular charge transfer interaction between polyimide chains has been proved, and the interaction has a profound effect on the glass transition temperature, T-g, and the dynamic mechanical modulus of polyimide. (C) 1997 Elsevier Science Ltd.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Aimed at raising the room temperature ionic conductivity of PEO-based solid polymer electrolyte and considered that the ionic conduction preferentially occurs in the amorphous phase, we lightly crosslinked the high MW PEO through gamma-irradiation and further suppressed the residual crystallinity by plasticizing with propylene carbonate. By incorporating LiClO4 salt to the above described polymer host, the ambient (25 degrees C) ionic conductivity of the electrolyte system could reach as high as 6.8 X 10(-4) S/cm. As the electrolyte was a crosslinked system, it was mechanically self-supportable. Based on the preliminary results of the electrochemical performance of the secondary lithium battery, assembled by using this kind of solid electrolyte and polyaniline as positive electrode, it is realized that the electrolyte thus prepared is of high expectancy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

According to the thermodynamic equilibria between the low spin state Co(III) (t2g6e(g)0) ion and the high spin state Co3+ (t2g4e(g)2) ion and between the cobalt and manganese ions with different valence state and spin state, an approximate semiempirical f

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the theoretical study on equation of state for polymers, much attention has been paid to the polymer in liquid state, but less to that in solid state. Therefore, some empirical and semi-empirical equations of state have been used to describe its pressure-volume-temperature (P-V-T) relations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mixed ionic-electronic conducting (MIEC) oxides, SrFeCo0.5Ox, SrCo0.8Fe0.2O3-delta and La0.6Sr0.4Fe0.8Co0.2O3-delta have been synthesized and prepared on yttria-stabilized zirconia as anodes for solid oxide fuel cells. Power output measurements show that the anodes composed of such kinds of oxides exhibit modest electrochemical activities to both H-2 and CH4 fuels, giving maximum power densities of around 0.1 W/cm(2) at 950 degrees C. Polarization and AC impedance measurements found that large activation overpotentials and ohmic resistance drops were the main causes for the relative inferior performance to the Ni-YSZ anode. While interlayered with an Ni-YSZ anode, a significant improvement in the electrochemical performance was observed. in particular, for the SrFeCo0.5Ox oxide interlayered Ni-YSZ anode, the maximum power output reaches 0.25 W/cm2 on CH,, exceeding those of both SrFeCo0.5Ox and the Ni-YSZ, as anodes alone. A synergetic effect of SrFeCo0.5Ox and the Ni-YSZ has been observed. Future work is needed to examine the long-term stability of MIEC oxide electrodes under a very reducing environment. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

La0.8Sr0.2Mn1.1O3 (LSM1.1)-10 mol% Sc2O3-Stabilized ZrO2 co-doped with CeO2 (ScSZ) composite cathodes were investigated for anode-supported solid oxide fuel cells (SOFCs) with thin 8 mol% Y2O3-stabilized ZrO2 (YSZ) electrolyte. X-ray diffraction (XRD) results indicated that the ScSZ electrolytes displayed good chemical compatibility with the nonstoichiometric LSM1.1 against co-firing at 1300 degrees C. Increasing the CeO2 content in the ScSZ electrolytes dramatically suppressed the electrode polarization resistance, which may be related to the improved surface oxygen exchange or the enlarged active area of cathode. The 5Ce10ScZr was the best electrolyte for the composite cathodes, which caused a small ohmic resistance decrease and the reduced polarization resistance and brought about the highest cell performance. The cell performances at lower temperatures seemed to rely on the electrode polarization resistance more seriously, than the ohmic resistance. Compared with the cell impedance at higher temperatures, the higher the 5Ce10ScZr proportion in the composite cathodes, the smaller the increment of the charge transfer resistance at lower temperatures. The anode-supported SOFC with the LSM1.1-5Ce10ScZr (60:40) composite cathode achieved the maximum power densities of 0.82 W/cm(2) at 650 degrees C and 2.24 W/cm(2) at 800 degrees C, respectively. (c) 2005 Elsevier B.V. All rights reserved.