92 resultados para scoring weights


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of homopolyimides and copolyimides was synthesized by the solution condensation of biphenyltetracarboxylic dianhydride (BPDA) isomers and various diamines followed by chemical imidization. These polyimides had intermediate to high molecular weights with inherent viscosities of 0.34-1.01 dL/g for homopolyimides and 0.48-1.02 dL/g for copolyimides. Thermogravimetric analysis indicated that the aromatic polyimides were stable up to 500degreesC, and the 5% weight loss temperatures were recorded in the range of 506-597degreesC in an air atmosphere and in the range of 517-601degreesC in a nitrogen atmosphere, depending on the diamines used. The glass transition temperatures of aromatic homopolyimides were above 271degreesC, while the glass transition temperatures of the copolyimides increased with an increase in the 2, 2', 3, 3'-BPDA-component. The effects of the chemical structure of the polymer chain on the solubility were investigated. It was found that the solubility of BPDA-based polyimides could be improved by the introduction of flexible units, nonlinear and non-coplanar units, and copolymerization. The polyimides with nonlinear and non-coplanar units derived from 2, 2', 3, 3'-BPDA appeared to have prominently enhanced solubility in polar aprotic solvents and polychlorocarbons when compared with the homopolyimide derived from 3, 3', 4, 4'-BPDA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three triblock copolymers of poly[styrene-b-(ethylene-co-butylene)-b-styrene] (SEBS) of different molecular weights and one diblock copolymer of poly[styrene-b-(ethylene-co-butylene)] (SEB) were used to compatibilize high density polyethylene/syndiotactic polystyrene (HDPE/sPS, 80/20) blend. Morphology observation showed that phase size of the dispersed sPS particles was significantly reduced on addition of all the four copolymers and the interfacial adhesion between the two phases was dramatically enhanced. Tensile strength of the blends increased at lower copolymer content but decreased with increasing copolymer content. The elongation at break of the blends improved and sharply increased with increments of the copolymers. Drop in modulus of the blend was observed on addition of the rubbery copolymers. The mechanical performance of the modified blends is strikingly dependent not only on the interfacial activity of the copolymers but also on the mechanical properties of the copolymers, particularly at the high copolymer concentration. Addition of compatibilizers to HDPE/sPS blend resulted in a significant reduction in crystallinity of both HDPE and sPS. Measurements of Vicat softening temperature of the HDPE/sPS blends show that heat resistance of HDPE is greatly improved upon incorporation of 20 wt% sPS.