107 resultados para ricostruzione 3D triangolazione laser computervision


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new method for measuring the density, temperature and velocity of N2 gas flow by laser induced biacetyl phosphorescence is proposed. The characteristics of the laser induced phosphorescence of biacetyl mixed with N2 are investigated both in static gas and in one-dimensional flow along a pipe with constant cross section. The theoretical and experimental investigations show that the temperature and density of N2 gas flow could be measured by observing the phosphorescence lifetime and initial intensity of biacetyl triplet (3Au) respectively. The velocity could be measured by observing the time-of-flight of the phosphorescent gas after pulsed laser excitation. The prospect of this method is also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A two-dimensional simplified model of an HF chemical laser is introduced. Using an implicit finite difference scheme, the solution of two adjacent parallel streams with diffusion mixing and chemical reaction is generated. A contour of mixing and reaction boundary is obtained without presupposition. The distribution of the HF(v) concentrations, gas temperature and the optical small signal gain (alpha sub V, J) on the flowing plane (X, Y) are presented. Compared with the solution solved directly from a set of Navier-Stokes equations, the results of these two methods agree with each other qualitatively. The influences of the different velocity, temperature (T sub 0) and composition of the two streams on the small signal gain after the nozzle exit are investigated. It is interesting that for larger J with a fixed v, the peaks of alpha sub v-T sub 0 profiles move towards higher T sub 0. The computing method is simple and only a short computing time is needed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An optimal algorithm of manufacturing path planner for intelligent laser surface modification is presented. Elements included in the optimal objective have been analyzed. A 6-D manufacture trace that satisfies the requirements of special craft and 5-axis laser processing robot system has been generated from the path planner by method of parallel section in which combinations of modification spots size with curvature of processing surfaces and modification craft parameters are considered. Related experiments have been successfully carried out with the computer integrated multifunctional laser manufacturing system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the computer integrated and flexible laser processing system, an intelligent measuring sub-system was developed. A novel model has been built up to compensate the deviations of the main frame-structure, and a new 3-D laser tracker system is applied to adjust the accuracy of the system. To analyze the characteristic of all kind surfaces of automobile outer penal moulds and dies, classification of types of the surface、brim and ridge(or vale) area to be measured and processed has been established, resulting in one of the main processing functions of the laser processing system. According to different type of surfaces, a 2-D adaptive measuring method based on B?zier curve was developed; furthermore a 3-D adaptive measuring method based on Spline curve was also developed. According to the laser materials processing characteristics and data characteristics, necessary methods have been developed to generate processing tracks, they are explained in details. Measuring experiments and laser processing experiments were carried out to testify the above mentioned methods, which have been applied in the computer integrated and flexible laser processing system developed by the Institute of Mechanics, CAS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low-energy laser-heating techniques are widely used in engineering applications such as, thinfilm deposition, surface treatment, metal forming and micro-structural pattern formation. In this paper,under the conditions of ignoring the thermo-mechanical coupling, a numerical simulation on the spatialand temporal temperature distribution in a sheet metal produced by the laser beam scanning in virtue of thefinite element method is presented. Both the three-dimensional transient temperature field and thetemperature evolution as a function of heat penetrating depth in the metal sheet are calculated. Thetemperature dependence of material properties was taken into account. It was shown that, after taking thetemperature dependence of the material absorbance effect into consideration, the temperature change ratealong the scanning direction and the temperature maximum were both increased.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A general three-dimensional model is developed for simulation of the growth process of silicon single crystals by Czochralski technique. The numerical scheme is based on the curvilinear non-orthogonal finite volume discretization. Numerical solutions show that the flow and temperature fields in the melt are asymmetric and unsteady for 8’’ silicon growth. The effects of rotation of crystal on the flow structure are studied. The rotation of crystal forms the Ekman layer in which the temperature gradient along solid/melt surface is small.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Czochralski (Cz) technique, which is used for growing single crystals, has dominated the production of single crystals for electronic applications. The Cz growth process involves multiple phases, moving interface and three-dimensional behavior. Much has been done to study these phenomena by means of numerical methods as well as experimental observations. A three-dimensional curvilinear finite volume based algorithm has been developed to model the Cz process. A body-fitted transformation based approach is adopted in conjunction with a multizone adaptive grid generation (MAGG) technique to accurately handle the three-dimensional problems of phase-change in irregular geometries with free and moving surfaces. The multizone adaptive model is used to perform a three-dimensional simulation of the Cz growth of silicon single crystals.Since the phase change interface are irregular in shape and they move in response to the solution, accurate treatment of these interfaces is important from numerical accuracy point of view. The multizone adaptive grid generation (MAGG) is the appropriate scheme for this purpose. Another challenge encountered is the moving and periodic boundary conditions, which is essential to the numerical solution of the governing equations. Special treatments are implemented to impose the periodic boundary condition in a particular direction and to determine the internal boundary position and shape varying with the combination of ambient physicochemical transport process and interfacial dynamics. As indicated above that the applications and processes characterized by multi-phase, moving interfaces and irregular shape render the associated physical phenomena three-dimensional and unsteady. Therefore a generalized 3D model rather than a 2D simulation, in which the governing equations are solved in a general non-orthogonal coordinate system, is constructed to describe and capture the features of the growth process. All this has been implemented and validated by using it to model the low pressure Cz growth of silicon. Accuracy of this scheme is demonstrated by agreement of simulation data with available experimental data. Using the quasi-steady state approximation, it is shown that the flow and temperature fields in the melt under certain operating conditions become asymmetric and unsteady even in the absence of extrinsic sources of asymmetry. Asymmetry in the flow and temperature fields, caused by high shear initiated phenomena, affects the interface shape in the azimuthal direction thus results in the thermal stress distribution in the vicinity, which has serious implications from crystal quality point of view.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to investigate the transient thermal stress field in wall-shape metal part during laser direct forming, a FEM model basing on ANSYS is established, and its algorithm is also dealt with. Calculation results show that while the wall-shape metal part is being deposited, in X direction, the thermal stress in the top layer of the wall-shape metal part is tensile stress and in the inner of the wall-shape metal part is compressive stress. The reason causing above-mentioned thermal stress status in the wall-shape metal part is illustrated, and the influence of the time and the processing parameters on the thermal stress field in wall-shape metal part is also studied. The calculation results are consistent with experimental results in tendency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Laser bending mechanism is remarked, and its essence is the temperature gradient mechanism. The reverse bending and the thickened mechanisms are included in the temperature gradient mechanism because they are only different phenomena based on different thickness of the material. Experimental result shows that there is a kind of un-convention temperature distribution in the limit thickness specimen under laser irradiation. This phenomenon cannot be explained by the classical Fourier Law and is defined as Pan-Fourier effect in order to explain laser bending mechanism further.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A modified simplified rate equation (RE) model of flowing chemical oxygen-iodine laser (COIL), which is adapted to both the condition of homogeneous broadening and inhomogeneous broadening being of importance and the condition of inhomogeneous broadening being predominant, is presented for performance analyses of a COIL. By using the Voigt profile function and the gain-equal-loss approximation, a gain expression has been deduced from the rate equations of upper and lower level laser species. This gain expression is adapted to the conditions of very low gas pressure up to quite high pressure and can deal with the condition of lasing frequency being not equal to the central one of spectral profile. The expressions of output power and extraction efficiency in a flowing COIL can be obtained by solving the coupling equations of the deduced gain expression and the energy equation which expresses the complete transformation of the energy stored in singlet delta state oxygen into laser energy. By using these expressions, the RotoCOIL experiment is simulated, and obtained results agree well with experiment data. Effects of various adjustable parameters on the performances of COIL are also presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Processing simulation is at the bottom of the coral technology of VM and is also difficult due to the complexity of mechanism and diversity of parameters. Previously much research has been mainly carried out on the geometrical simulation or physical simulation respectively. The aim of this paper is to study the processing simulation in laser surface treatment based on the mechanism, put forward the architecture of the whole processing simulation and give the models of the processing. As a result the data structure layers in the whole simulation is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the computer integrated and flexible laser processing system, develop the intelligent measuring sub-system. A novel model has been built to compensate the deviations of the main frame, a new-developed 3-D laser tracker system is applied to adjust the accuracy of the system. Analyzing the characteristic of all kinds of automobile dies, which is the main processing object of the laser processing system, classify the types of the surface and border needed to be measured and be processed. According to different types of surface and border, develop 2-D adaptive measuring method based on B?zier curve and 3-D adaptive measuring method based on spline curve. During the data processing, a new 3-D probe compensation method has been described in details. Some measuring experiments and laser processing experiments are carried out to testify the methods. All the methods have been applied in the computer integrated and flexible laser processing system invented by the Institute of Mechanics, CAS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pulsed laser beam was used to modify surface processing for ductile iron. The microstructures of processed specimen were observed using optical microscope (OM). Nanoindentation and micro-hardness of microstructures were measured from surface to inner of sample. The experimental results show that, modification zone is consisted of light melted zone, phase transformation hardening area and transient area. The light melt area is made up of coarse dendrite crystalline with a thickness less than 20um, phase transformation hardening area mainly of laminal or acicular martensite, retained austenite and graphite, i.e. M+A prime+ G. The cow-eye microstructure around graphite sphere always is formed in phase transformation hardening area zone, which consisting of a variety structure with the distance from the surface. So, it maybe as a obvious sign distinguishing modification zone border. Finally, the microstructures evolution of laser pulse processed ductile iron was analyzed coupling with beam energy distribution in space and laser pulse heating procession characteristics. The analysis shows that energy distribution of laser pulse has an important effect on microstructure during laser pulse modified ductile iron. Multi-scale and interlace arrangement are the important features for laser pulse modified ductile iron. Of microstructure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to investigate the transient thermal stress field in wall-shape metal part during laser direct forming, a FEM model basing on ANSYS is established, and its algorithm is also dealt with. Calculation results show that while the wall-shape metal part is being deposited, in X direction, the thermal stress in the top layer of the wall-shape metal part is tensile stress and in the inner of the wall-shape metal part is compressive stress. The reason causing above-mentioned thermal stress status in the wall-shape metal part is illustrated, and the influence of the time and the processing parameters on the thermal stress field in wall-shape metal part is also studied. The calculation results are consistent with experimental results in tendency.