121 resultados para regional migration


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We explore control mechanisms underlying the vertical migration of zooplankton in the water column under the predator-avoidance hypothesis. Two groups of assumptions in which the organisms are assumed to migrate vertically in order to minimize realized or effective predation pressure (type-I) and to minimize changes in realized or effective predation pressure (type-II), respectively, are investigated. Realized predation pressure is defined as the product of light intensity and relative predation abundance and the part of realized predation pressure that really affects organisms is termed as effective predation pressure. Although both types of assumptions can lead to the migration of zooplankton to avoid the mortality from predators, only the mechanisms based on type-II assumptions permit zooplankton to undergo a normal diel vertical migration (morning descent and evening ascent). The assumption of minimizing changes in realized predation pressure is based on consideration of DVM induction only by light intensity and predators. The assumption of minimizing changes in effective predation pressure takes into account, apart from light and predators also the effects of food and temperature. The latter assumption results in the same expression of migration velocity as the former one when both food and temperature are constant over water depth. A significant characteristic of the two type-II assumptions is that the relative change in light intensity plays a primary role in determining the migration velocity. The photoresponse is modified by other environmental variables: predation pressure, food and temperature. Both light and predation pressure are necessary for organisms to undertake DVM. We analyse the effect of each single variable. The modification of the phototaxis of migratory organisms depends on the vertical distribution of these variables. (C) 2001 Academic Press.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Firstly, established sequence stratigraphy of Sinian System-Middle Triassic Series framework in Sichuan basin,be divided into 21 second-level sequence stratigraphy and 105 third-level sequence stratigraphy.From many aspects,discussed sequence stratigraphy characteristic. On the foundation of structure unconformity and fission track analysis, on the ground of An county-Shuinin county regional seismic section, using the positive evolution equilibrium principle technology, comprehensivly be mapped structure evolution of Sichuan basin. It can be divided into seven stages, that is :Pre-Sinian basement stage, cratonic depression basin(Z1-S)stage, cratonic rifted basin(D-T2)stage, passive continental margin(T3x1-3)stage, foreland basin(T3x4-6)stage, depression basin (Jurassic Period-Miocene Epoch) stage, formed basin (Holocene Epoch) stage. Analysis on structure evolution history,burial history,source rocks thermal evolution history, Maoba changxing formation gas pool forming process can be classified into four stages: ancient lithological oil pool stages in Indosinian-early Yanshanian period(T-J1-2), ancient structure- lithological gas pool stages in middle Yanshanian period(J3-K1), structure- lithological gas pool setting stages in last Yanshanian period(K2), structure- lithological gas pool adjusting and transformation stages in Himalayan period(R-Q). Maoba feixianguan formation gas pool forming process can be classified into two stages: second structure gas pool stages in last Yanshanian period(K2),second structure gas pool physical adjusting and transformation stages in Himalayan period(R-Q),and summarize reservoir formation model. On the base of newest exploration achievement and petroleum geologic comprehensive research , demonstrate how structure controls hydrocarbon accumulation. Structure controlling source rocks behaves structure controlling main source rocks’sedimentary facies, medium-large pools mainly located at center or margin of hydrocarbon generation. Structure controlling palaeo-karst reservoirs ,reef and beach facies reservoirs, fault and fracture reservoirs. Structure controlling palaeo-uplift, and palaeo-uplift controlling hydrocarbon migration, active reservoirs’forming, palaeo-structure traps forming. Structure controls distribution of mudstone and gypsolith, controls preservation. Structure controls hydrocarbon conducting, structure traps forming and hydrocarbon accumulation. Whether or no, Structure controls total process of basin forming-source rocks’generation- hydrocarbon accumulation. It is direct effect results of structure movements that large traps’ conditions, conducting migration conditions, high quality preservation. source rocks’condition and reservoirs’ condition are the indirect effect results. In the last analysis, “source rock controlling theory”, “high quality reservoir mainly controlling theory”, “palaeo-uplift controlling theory” and “current structure deciding theory” are structure controlling hydrocarbon accumulation. There are high variability and complex mechanisms in Sichuan basin , but the regional hydrocarbon accumulation conditions are very well, such as abundant source rocks, matching process of hydrocarbon accumulation and many exploration areas. By means of integrated analysis, put forward hydrocarbon exploration direction and large-middle targets of China Petroleum and Chemical Corporation .Thus, more and more hydrocarbon proved reserve and output in Sichuan basin will be contributed to China energy industry in a long future time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

After systemic investigation of the techniques,route lines and mechanisms about the remaining oil,the dynamic migration and congregation behavior of the remaining oil are discussed on base of interaction between flowing and enriching of water and oil.After the micro-scope modeling of the fluid flow in porous media and the changes in petrol-physical properties of the flowing system, the characters of fluid fields and the dynamic distribution of oil are discussed, among which the preference-flowing is focused on. Based on the preference-flowing in porous media, the concept of the preference-flowing channels is developed. According to above, heterogeneous distribution of water and oil in the field and dynamic mechanism of remaining oil are all obvious. media can be divided into three kinds, directional, stochastic, arbitrary porous media. The main research results are as following: 1. Treating the characteristic parameters such as permeability, porosity and wettability as regional parameter, the fluid field with high water-cut has been established by geostatistical method, among which the difference of flowing pores and the changes of its petrol-physical properties during flooding are studied. 2. The flow process of water and oil are recurrent in physical simulation experiments, in which the mechanisms and phenomena are caught and analyzed. Fluid flow mechanics in porous media with preference-flowing channels have been studied. 3. The mutual coupling between water and oil is induced and the mathematical evolution equations including this interaction were built. . 4. Through coupling effect between flowing water and oil, the dynamic migration and congregation behavior of remaining oil depend upon this coupling. 5. Coupling between water and oil act as driving force and trapping force for the remaining oil. The coupling model of thesis has been verified by simplified the numerical model and compared results with Ng35 oil reservoir in Gudao oil field, it has important theoretical and application values for improving precision of remaining oil and production performance prediction, and is a new method for studying the mechanics of remaining oil in channeled porous media has been established. Key words:flow field,high water-cut,coupling,dominant flow in porous media,remaining oil

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Petroleum and natural gas is an important strategic resources. The short of the reserves will block the development of economy and threaten the safety of nation, along with the main oil fields of our country coming to the height of power and splendor of the exploitation and exploration. Therefore, it makes a great sense to inaugurate new explorative field and increase the reserves of petroleum and natural gas. Magnetic exploration is a main method of geophysics exploration. the developing observation apparatus and the perfect processing method provide wide space for magnetic exploration in these years. The method of magnetic bright spot is an application of magnetic exploration. The vertical migration of the hydrocarbon changes physical and chemical environment above the hydrocarbon reservoir, the new environment make tervalent iron translate into bivalent iron, that produce small scale magnetic anomaly, that is magnetic bright spot. The method of magnetic bright spot explores oil and gas field by the relation between the hydrocarbon and magnetic anomaly. This paper systemically research to pick-up and identify magnetic bright spot combining an oil field item, then point out advantaged area. In order to test the result, the author use the seismic information to superpose the magnetic bright spot, that prove the magnetic bright spot is reliable. then, the author complete a software to pick and identify the magnetic bright spot. The magnetic basement is very important to research forming and evolvement of the basin, especially, it is a crucial parameter of exploring residual basin in the research on pre-Cenozoic residual. This paper put forward a new method to inverse the interface of the magnetic layer on the basis of previous work, that is the method of separation of magnetic field step by step. The theory of this method is to translate the result of magnetic layer fluctuation to the result of magnetization density change, and the magnetic layer is flat, the paper choose thickness of magnetic layer as unit thickness, and define magnetic layer as a unit-thickness layer in order to convenient calculation, at the same time, define the variational magnetization density as equivalent magnetic density. Then we translate the relation between magnetic field and layer fluctuation to the relation between magnetic field and equivalent magnetic density, then, we can obtain the layer fluctuation through calculating equivalent magnetic density. Contrast to conventional parker method, model experimentation and example checkout prove this method is effective. The merit of this method is to avoid flat result in a strongly fluctuant area because of using a uniform average depth, the result of this method is closer to the fact, and this method is to inverse equivalent magnetic density, then translate equivalent magnetic density to layer fluctuation, this lays a foundation to inverse variational magnetic density in the landscape orientation and portrait.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Because of its sensitivity to the velocity discontinuity of the earth, receiver function technique has become a routine procedure used to probe interior structure of the earth. Receiver functions contain anisotropic information of the earth’s interior, however, traditional receiver function techniques such as migration imaging and waveform inversion method, which are based on isotropic media assumption, can not effectively extract the anisotropy information contained in the azimuth variation pattern. Only by using the anisotropic media, e.g. a model with symmetric axis of arbitrary orientation, computing the response, can we obtain the detailed anisotropy information hidden in the radial and transversal receiver function. Focusing on the receiver function variation pattern changing wtih different back azimuths, we introduced different kinds of symmetric systems of seismic anisotropy used often, and summarized some possible causes of anisotropy formation. We show details about how to calculate the response of a stratified anisotropy model with symmetric axis of arbitrary orientation. We also simulated receiver functions among different models and analyzed how the changing of anisotropic parameters influence the azimuth variation pattern of receiver functions. The anisotropy study by receiver function analysis was applied to Taihang Mountain Range (TMR) in North China in this thesis. The maximum entropy spectrum deconvolution technique was used to extract radial and transversal receiver functions from the waveforms of 20 portable seismic stations deployed in TMR. Considering the signal-to-noise ratio and the azimuth coverage, we got the variation pattern of receiver functions for 11 stations. After carefully analyzing the pattern of the receiver functions that we got, we obtained the reliable evidence on the existence of anisotropy in the shallow crust in TMR. Our results show that, although the thickness of the upper crustal layer is only about 1 km, the layer shows a strong anisotropy with magnitude of 8~15%; in the deeper of crust, the magnitudes of anisotropy is about 3%~5%, showing a pattern with fast-symmetric-axis. The crust anisotropy beneath TMR in North China obtained in this study also shows a significant difference in both the lateral and vertical scale, which might imply a regional anisotropy characteristic in the studied region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ordos basin is a large-scale craton overlapping basin, which locates in western North China platform and possesses abundant hydrocarbon resources. Ansai area in 2007 to extend the head of Chang10 of Yangchang Formation has made breakthrough progress in the region, long a high of Gao52 was Chang10 industrial oil flow, for oil exploration Ansai Oil Field opened a new chapter. in 2008, high of Gao52, Wang519, Gao34 producing wells area of building and found the existence of Chang10 great potential for the discovery of Chang10 Reservoir, Ansai Oil Field for a new direction, showing a good exploration development prospects.The study of occurrence and distribution features of hydrocarbon should be made by new theories and evolutions of sedimentology, sequence stratigraphy, reservoir sedimentology and petroleum geology form different angles on the base of regional geology background. Ansai Oil Field is in mid Shanbei Slope, which is a considerable producing zone of Ordos basin. Chang10 of Yangchang Formation is an important oil-bearing series, which sedimentary formation was formed in Indosinian orogeny, Late Triassic, sedimentary background is a momentary uplifting in Ordos basin, and exploration and exploitation of hydrocarbon in this area is very important. To further descripte disciplinarian of accumulation hydrocarbon, carefully study on sedimentary facies, reservoir type and disciplinarian of accumulation hydrocarbon of Chang10 of Yangchang Formation in study area is needed. By collecting date of field profile, outcrop, core and many other geological, through sedimentary and oil geological analysis, sedimentary facies types were identified, distributing of sedimentary facies and extension of sand body were analyzed too. Finally, the main controlling factors of hydrocarbon and the favorable areas were found out by deeply studying sedimentary system and disciplinarian of accumulation oil&gas in Chang10 of Yangchang Formation, Late Triassic in Ansai Oil Field. Chang10 of Yangchang Formation is main study formation, which is divided into three members (Chang101, Chang102 and Chang103), Chang101 is subdivided into three (Chang1011, Chang1012and Chang1013) reservoirs. By defining Layered borderline between every member and detailed describing rock and electro characteristic, member zonation become more reasonable and accurate also sedimentary facies and disciplinarian of accumulation oil&gas in study area are confirmed Through researching sedimentary facies, reservoir sand and hydrocarbon migration, accumulation, distribution, hydrocarbon accumulation models of Chang10 of Yangchang Formation in study area is pointed out, which is lithologic hydrocarbon reservoir and tectonic-lithologic hydrocarbon reservoir. Different play is formed by different processes and factors. Through analysis of reservoir property, trap type and accumulation model, several favorable exploration areas can be found out in Chang 10 reservoirs (Chang1011, Chang1012and Chang1013) of the Ansai Oil Field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

According to the basic geologic conditions, the paper is directed by the modem oil-gas accumulation theory and petroleum system in which typical oil pools are analyzed and the shape of lithologic trap and geologic factors are pointed out. The process during which oil and gas migrate from source rock to lithologic trap is rebuilt, and the accumulation model of oil pool is set up. With the comprehensive application of seismic geologic and log data and paying attention to the method and technology which is used to distinguish lithologic accumulation. Promising structural-lithofacies zones are got and the distribution rule of various lithologic accumulation is concluded. With making use of the biologic mark compound, different reservoirs are compared. As a result, the oil and gas in HeiDimiao come from Nenjiang Group's source rocks; in SaErTu from QingShenkou Group's and Nenjiang Group's, and in PuTaohua. GaoTaizi and FuYang from QingShankou Group's. According to the development and distribution of effective source rock, oil distribution and the comparison in the south of SongLiao basin, the characteristic of basin structure and reservoir distribution is considered, and then the middle-upper reservoir of SongLiao basin south are divided into two petroleum system and a complex petroleum system. Because of the characteristic of migration and accumulation, two petroleum systems can furtherly be divided into 6-7 sub-petroleum systems,20 sub-petroleum systems in all. As a result of the difference of the migration characteristic, accumulation conditions and the place in the petroleum system, the accumulation degree and accumulation model are different. So three accumulation mechanism and six basic accumulation model of lithologic trap are concluded. The distribution of lithologic pools is highly regular oil and gas around the generation sag distribute on favorable structural-lithofacies zones, the type of lithological pool vary regularly from the core of sandstone block to the upper zone. On the basic of regional structure and sedimentary evolution, main factors which control the form of trap are discovered, and it is the critical factor method which is used to discern the lithologic trap. After lots of exploration, 700km~2 potential trap is distinguished and 18391.86 * 10~4 tons geologic reserves is calculated. Oil-water distribution rule of pinch-out oil pool is put up on plane which is the reservoirs can be divided into four sections. This paper presented the law of distribution of oil and water in updip pinch-out reservoir, that is, hydrocarbon-bearing formation in plane can be divided into four zones: bottom edge water zone, underside oil and water zone, middle pure oil zone and above residual water zone. The site of the first well should be assigned to be middle or above pure oil zone, thus the exploration value of this type of reservoir can be recognized correctly. In accordance with the characteristics of seism and geology of low permeability thin sandstone and mudstone alternation layer, the paper applied a set of reservoir prediction technology, that is: (1)seism multi-parameter model identification; (2) using stratum's absorbing and depleting information to predict reservoir's abnormal hydrocarbon-bearing range. With the analysis of the residual resource potential and the research of two petroleum system and the accumulation model, promising objective zones are predicted scientifically. And main exploration aim is the DaRngZi bore in the west of ChangLin basin, and YingTai-SiFangZi middle-upper assembly in Honggang terrace.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, chimney structure has been proved one of important indicators and a useful guide to major petroleum fields exploration through their exploration history both at home and abroad. Chimney structure, which has been called "gas chimney" or "seismic chimney", is the special fluid-filled fracture swarm, which results from the boiling of active thermal fluid caused by abruptly decreasing of high pressure and high temperature in sedimentary layers of upper lithosphere. Chimney structure is well developed in continental shelf basin of East China Sea, which indicates the great perspectives of petroleum resources there. However, the chimney structure also complicated the petroleum accumulation. So the study of chimney structure on its formation, its effect on occurrence and distribution of petroleum fields is very important not only on theoretical, but also on its applied research. It is for the first time to make a clear definition of chimney structure in this paper, and the existence and practical meaning of chimney structure are illustrated. Firstly, on the viewpoint of exploration, this will amplify exploration area or field, not only in marine, but also on continent. Secondly, this is very important to step-by-step exploration and development of petroleum fields with overpressure. Thirdly, this will provide reference for the study on complex petroleum system with multi-sources, commingled sources and accumulation, multi-stage accumulations, and multi-suits petroleum system in the overlay basin. Fourthly, when the thermal fluid enters the oceanic shallow layer, it can help form gas hydrate under favorable low-temperature and high-pressure conditions. Meanwhile, the thermal fluid with its particular component and thermal content will affect the physical, chemical and ecological environments, which will help solving the problem of global resources and environment. Beginning from the regional tectonic evolution characteristics, this paper discussed the tectonic evolution history of the Taibei depression, then made an dynamical analysis of the tectonic-sedimentary evolution during the Mesozoic and Cenozoic for the East China Sea basin. A numerical model of the tectonic-thermal evolution of the basin via the Basin-Mod technique was carried out and the subsidence-buried history and thermal history of the Taibei depression were inverse calculated: it had undergone a early rapid rift and sag, then three times of uplift and erosion, and finally depressed and been buried. The Taibei depression contains a huge thick clastic sedimentary rock of marine facies, transitional facies and continental facies on the complex basement of ante-Jurassic. It is a part of the back-arc rifting basins occurred during the Mesozoic and Cenozoic. The author analyzed the diagenesis and thermal fluid evolution of this area via the observation of cathodoluminescence, scanning electron microscope and thin section, taking advantage of the evidences of magma activities, paleo-geothermics and structural movement, the author concluded that there were at least three tectonic-thermal events and three epochs of thermal-fluid activities; and the three epochs of thermal-fluid activities were directly relative to the first two tectonic-thermal events and were controlled by the generation and expulsion of hydrocarbon in the source rock simultaneously. Based on these, this paper established the corresponding model between the tectonic-thermal events and the thermal-fluid evolution of the Taibei Depression, which becomes the base for the study on the chimney structures. According to the analyses of the gas-isotope, LAM spectrum component of fluid inclusion, geneses of CO_2 components and geneses of hydrocarbon gases, the author preliminarily verified four sources of the thermal fluid in the Taibei Depression: ① dehydration of mud shale compaction, ② expulsion of hydrocarbon in the source rock; ③ CO_2 gas hydro-thermal decomposition of carbonatite; ④magma-derived thermal fluid including the mantle magma water and volatile components (such as H_2O, CO_2, H_2S, SO_2, N_2 and He etc.). On the basis of the vitrinite reflectance (Ro), homogenization temperature of fluid inclusion, interval transit time of major well-logging, mud density of the wells, measured pressure data and the results of previous studies, this paper analyzed the characteristics of the geothermal fields and geo-pressure fields for the various parts in this area, and discussed the transversal distribution of fluid pressure. The Taibei depression on the whole underwent a temperature-loss process from hot basin to cold basin; and locally high thermal anomalies occurred on the regional background of moderate thermal structure. The seal was primarily formed during the middle and late Paleocene. The overpressured system was formed during the middle and late Eocene. The formation of overpressured system in Lishui Sag underwent such an evolutionary process as "form-weaken-strengthen-weaken". Namely, it was formed during the middle and late Eocene, then was weakened in the Oligocene, even partly broken, then strengthened after the Miocene, and finally weakened. The existence of the thermal fluid rich in volatile gas is a physical foundation for the boiling of the fluid, and sharply pressure depletion was the major cause for the boiling of the fluid, which suggests that there exists the condition for thermal fluid to boil. According to the results of the photoelastic simulation and similarity physical experiments, the geological condition and the formation mechanism of chimnestructures are summarized: well compartment is the prerequisite for chimney formation; the boiling of active thermal fluid is the original physical condition for chimney formation; The local place with low stress by tension fault is easy for chimney formation; The way that thermal fluid migrates is one of the important factors which control the types of chimney structures. Based on where the thermal fluid come from and geometrical characteristics of the chimney structures, this paper classified the genetic types of chimney structures, and concluded that there existed three types and six subtypes chimney structures: organic chimney structures generated by the hydrocarbon-bearing thermal fluid in middle-shallow layers, inorganic and commingling-genetic chimney structures generated by thermal fluid in middle-deep layers. According to the seismic profiles interpretations, well logging response analysis and mineralogical and petrological characteristics in the study area, the author summarized the comprehensive identification marks for chimney structures. Especially the horizon velocity analysis method that is established in this paper and takes advantage of interval velocity anomaly is a semi-quantitative and reliable method of chimney structure s identification. It was pointed out in this paper that the occurrence of the chimney structures in the Taibei depression made the mechanism of accumulation complicated. The author provided proof of episodic accumulation of hydrocarbon in this area: The organic component in the boiling inclusion is the trail of petroleum migration, showing the causality between the boiling of thermal fluid and the chimney structures, meanwhile showing the paroxysmal accumulation is an important petroleum accumulation model. Based on the evolutionary characteristics of various types of chimney structures, this paper discussed their relationships with the migration-accumulation of petroleum respectively. At the same time, the author summarized the accumulating-dynamical models associated with chimney structures. The author analyzed such accumulation mechanisms as the facies state, direction, power of petroleum migration, the conditions of trap, the accumulation, leakage and reservation of petroleum, and the distribution rule of petroleum. The author also provides explanation for such practical problems the existence of a lot of mantle-derived CO_2, and its heterogeneous distribution on plane. By study on and recognition for chimney structure, the existence and distribution of much mantle-derived CO_2 found in this area are explained. Caused by tectonic thermal activities, the deep magma with much CO_2-bearing thermal fluid migrate upward along deep fault and chimney structures, which makes two wells within relatively short distance different gas composition, such as in well LF-1 and well LS36-1-1. Meanwhile, the author predicted the distribution of petroleum accumulation belt in middle-shallow layer for this area, pointed out the three favorable exploration areas in future, and provided the scientific and deciding references for future study on the commingling-genetic accumulation of petroleum in middle-deep layer and the new energy-gas hydrate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Godao area, located in the east of the Zhanhua depression of Jirang sag in Bohai Bay Basin, is the studying area in my dissertation. It is first time that fault sealing properties and the related relationship with the pool forming are studied in Gudao area. On the base of the analysis of the regional tectonics, the author has studied the tertiary structural evolution of the Gudao area and distinguished the fault's level and put forward the distinguishing principle. The geometrical feature, mechanical characters, developmental mechanism and history of the boundary faults in the tectonic unit of this area are all studied and emphasized especially. The buried history of oil-generating depression (that is Gudao depression) and the history of oil and gas migration simultaneously are discussed, the juxtaposition relationship between boundary fault evolutionary history and oil and gas migrated history are expatiated. To the geological condition of the Gudao area, three level faults sealing properties of this area were discussed in detail. Their characteristics of behavior and the intrinsic relationship between their sealing and oil and gas migrated reservoir are elucidated. The pool-forming models related to fault seal are exposed. The author has studied the lithologies of different order of faults, the relationship of occurrence assemblage analysis, normal stress of fault plane in different depth and shale smear factor faults. Then analysis their role in the various faults sealing and confirms fault sealing marks of three different orders faults and exposes the mechanism of fault sealing. Shale smear zone formed by first order fault in lasting activities is one different type of fault breccia and mainly controlled factor to its entrapment of petroleum. Effective sealing threshold value and fault displacement is ascertained. Mainly controlled factor of second fault sealing is bigger compressive stress loaded on fault plane. According to this, quantitatively evaluated index is given. Shale smear zone is necessary condition for second fault stress entrapment. The juxtaposed relationship between the different lithologies within third order faults is most important controlled factor for its sealing. Based on various order of fault sealing features and mechanism in Gudao area, the author proposed three orders of fault sealing models. Shale smear zone sealing model, normal stress sealing model and lithologies juxtaposed sealing model are suggested to first, second and third order fault respectively. The conclusion of this studying has not only the very important theoretical significance and practical value in Gudo area but also the very important guiding role for other areas of related aspects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the complex faulted-block oil reservoir of Xinzhen area in Dongying depression is systematically studied from basic conditions forming faulted-block oil and gas reservoir integrating geology, seismic, logging and reservoir engineering information and computer; guided by petroleum geology, geomechanics, structural geology and geophysics and other theories. Based on analysis of background condition such as regional strata, structure and petroleum geology, structural research on geometry, kinemaitcs and dynamics, oil-controlling fault research on the seal features, sealing mechanism and sealing pattern, and research on enrichment rules and controlling factors of complex faulted-block oil reservoir are carried out to give out the formation mechanics of oil reservoir of Xinzhen complex faulted-block oil reservoir. As a result, the reservoir formation pattern is established. At the same time, through dissecting the characteristics and hydrocarbon enrichment law of complex faulted-block oil reservoir, and studying its distribution law of remaining oil after entering extra high water-cut period, a set of technologies are formed to predict complex faulted-block oil reservoir and its remaining oil distribution and to enhance oil recovery (EOR). Based on the time relationship between migration of hydrocarbon and trap formation, accumulating period of Xinzhen oil reservoir is determined. The formation of Xinzhen anticlinal trap was prior to the primary migration. This is favorable to formation of Xinzhen anticlinal hydrocarbon reservoir. Meanwhile, because anticline top caving isn't at the sane time as that of moving or faulted-trap forming inner anticline, oil and gas migrated many times and Xinzhen complex faulted-block oil reservoir formed from ES_3~(upper) to EG. Accumulating law and controlling factors of complex faulted-block reservoir are analyzed from many aspects such as regional structure background controlling hydrocarbon accumulating, plastic arch-open structure controlling oil-bearing series and reservoir types, sealing-opening of fault controlling hydrocarbon distribution and structure pattern controlling enriched trap types. Also, we established the structure pattern in Xinzhen a'ea: the arch-open of underlying strata cause expanding fracture. The main block groups developed here are shovel-like normal fault block group in the north area of Xinzhen and its associated graben block group. Block groups dominate the formation and distribution of reservoirs. We studied qualitatively and quantitatively the sealing characteristics, sealing history and sealing mechanism of faults, too. And, the sealing characteristics are evaluated and the distribution pattern of hydrocarbon controlled by faults is researched. Due to movement intensity of big faults, deep falling of downthrown block, high degree of repture and development of fracture, shallow layers close to the downthrown block of secondary faults are unfavorable to hydrocarbon accumulation. This is confirmed by the exploration practice in Xinzhen anticline. In terms of the downthrown blocks of sencondary contemporaneous faults lied in the south and north area of Xinzhen, hydrocarbon is poor close to fracture belt, while it is relatively abundant in tertiary companion faults. Because of long-term movement of faults that control hydrocarbon, fi'om ES3 to EG, six set of oil-bearing series formed. And their opening causes the inhomogeneity in hydrocarbon abundance among each block--in two flanks of anticline reservoirs are abundant while in the axial area, oil and gas are sporadic. There the sealing characteristics control oil-bearing area of oil/gas accumulation and the height of oil reservoir. Longitudinally, oil and gas are enriched in dip-flat areas in mid-plane of faults. It is established that there are four types of accumulating patterns in complex faulted-block oil reservoirs in Xinzhen. The first is accumulating pattern of lithologic oil reservoirs in E~S_3~(mid-lowwer), that is, self-generating-self-reserving-self-covering lithologic trap pattern. The second is drag-anticline accumulating pattern in Xinzhen. The structure traps are drag anticlines formed by the contemporaneous faults of the second basement in the north of Xinzhen, and the multiple source rocks involve Ek_2, Es_4, Es_3 and Es_1 members. The reservoirs are fluvial-delta sandstones of the upper member of Shahejie formation and Guantao formation, covered by regional thick mudstone of the upper member of Guantao formation and MingHuazhen formation. The third is the accumulating pattern of reverse listric fault, the third-degree fault of Xinzhen anticline limb and the reservoirs form reservoir screened by reverse listric faults. The forth is accumulating pattern of crossing faults which form closing or semi-closing faulted-blocks that accumulate hydrocarbon. The technologies of predicting remaining oil in complex faulted-block reservoir during the mid and late development stage is formed. Remaining oil in simple large faulted-blocks enriches in structural high, structural middle, structural low of thick bottom water reservoirs, points near bent edge-fault oftertiary faults and part the fourth ones with big falling displacement, microstructure high place of oil-sandbodies and areas where local well pattern isn't perfect. While that in small complex faulted-blocks enriches near small nose, small high point, angle of small faults, small oil-bearing faulted-blocks without well and areas with non-perfect well pattern. The technologies of enhancing recovery factor in complex faulted-block reservoir during the mid and late development stage is formed as follows: fine reservoir description, drilling adjust wells, designing directional wells, sub-dividing layer series of development, improving flooding pattern, changing water-injection direction and enhancing swept volume, cyclic waterflooding and gas-injection, etc. Here, directional wells include directional deflecting wells, lateral-drilling wells, lateral-drilling horizontal wells and horizontal wells. The results of this paper have been used in exploration and development of Shengli oilfield, and have achieved great social and economic profit, especially in predicting distribution of complex faulted-block reservoir, remaining oil distribution during middle and late stage of development, and in EOR. Applying the achievement of fault-closure research, new hydrocarbon-bearing blocks are discovered in flanks of Dongying central uplift and in complex blocks with proved reserves 15 million tons. With the study of remaining oil distribution law in complex faulted-block reservoirs, recovery factors are increased greatly in Dongxin, Xianhe and Linpan complex faulted-block reservoirs and accumulated oil production increment is 3 million tons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mudstone reservoir is a subtle reservoir with extremely inhomogeneous, whose formation is greatly related to the existence of fracture. For this kind of reservoir, mudstone is oil source rock, cover rock and reservoir strata, reservoir type is various, attitude of oil layer changes greatly, and the distribution of oil and gas is different from igneous or clastic rock reservoir as well as from carbonate reservoir of self-producing and self-containing of oil and gas. No mature experience has been obtained in the description, exploration and development of the reservoir by far. Taking Zhanhua depression as an example, we studied in this thesis the tectonic evolution, deposit characteristics, diagenesis, hydrocarbon formation, abnormal formation pressure, forming of fissure in mudstone reservoir, etc. on the basis of core analysis, physical simulation, numerical simulation, integrated study of well logging and geophysical data, and systematically analyzed the developing and distributing of mudstone fissure reservoir and set up a geological model for the formation of mudstone fissure reservoir, and predicted possible fractural zone in studied area. Mudstone reservoir mainly distributed on the thrown side of sedimentary fault along the sloping area of the petroleum generatiion depression in Zhanhua depression. Growing fault controlled subsidence and sedimentation. Both the rate of subsidence and thickness of mudstone are great on the thrown side of growing fault, which result in the formation of surpressure in the area. The unlocking of fault which leads to the pressure discharges and the upward conduct of below stratum, also makes for the surpressure in mudstone. In Zhanhua depression, mudstone reservior mainly developed in sub-compacted stratum in the third segment of Shahejie formation, which is the best oil source rock because of its wide spread in distribution, great in thickness, and rich in organic matter, and rock types of which are oil source mudstone and shale of deep water or semi-deep water sediment in lacustrine facies. It revealed from core analysis that the stratum is rich in limestone, and consists of lamina of dark mudstone and that of light grey limestone alternately, such rock assemblage is in favor of high pressure and fracture in the process of hydrocarbon generation. Fracture of mudstone in the third segment of Shahejie formation was divided into structure fracture, hydrocarbon generation fracture and compound fracture and six secondary types of fracture for the fist time according to the cause of their formation in the thesis. Structural fracture is formed by tectonic movement such as fold or fault, which develops mainly near the faults, especially in the protrude area and the edge of faults, such fracture has obvious directivity, and tend to have more width and extension in length and obvious direction, and was developed periodically, discontinuously in time and successively as the result of multi-tectonic movement in studied area. Hydrocarbon generation fracture was formed in the process of hydrocarbon generation, the fracture is numerous in number and extensively in distribution, but the scale of it is always small and belongs to microfracture. The compound fracture is the result of both tectonic movement and hydrocarbon forming process. The combination of above fractures in time and space forms the three dimension reservoir space network of mudstone, which satellites with abnormal pressure zone in plane distribution and relates to sedimentary faces, rock combination, organic content, structural evolution, and high pressure, etc.. In Zhanhua depression, the mudstone of third segment in shahejie formation corresponds with a set of seismic reflection with better continuous. When mudstone containing oil and gas of abnormal high pressure, the seismic waveform would change as a result of absorb of oil and gas to the high-frequency composition of seismic reflection, and decrease of seismic reflection frequency resulted from the breakage of mudstone structure. The author solved the problem of mudstone reservoir predicting to some degree through the use of coherent data analysis in Zhanhua depression. Numerical modeling of basin has been used to simulate the ancient liquid pressure field in Zhanhua depression, to quantitative analysis the main controlling factor (such as uncompaction, tectonic movement, hydrocarbon generation) to surpressure in mudstone. Combined with factual geologic information and references, we analyzed the characteristic of basin evolution and factors influence the pressure field, and employed numerical modeling of liquid pressure evolution in 1-D and 2-D section, modeled and analyzed the forming and evolution of pressure in plane for main position in different periods, and made a conclusion that the main factors for surpressure in studied area are tectonic movement, uncompaction and hydrocarbon generation process. In Zhanhua depression, the valid fracture zone in mudstone was mainly formed in the last stage of Dongying movement, the mudstone in the third segment of Shahejie formation turn into fastigium for oil generation and migration in Guantao stage, and oil and gas were preserved since the end of the stage. Tectonic movement was weak after oil and gas to be preserved, and such made for the preserve of oil and gas. The forming of fractured mudstone reservoir can be divided into four different stages, i.e. deposition of muddy oil source rock, draining off water by compacting to producing hydrocarbon, forming of valid fracture and collecting of oil, forming of fracture reservoir. Combined with other regional geologic information, we predicted four prior mudstone fracture reservoirs, which measured 18km2 in area and 1200 X 104t in geological reserves.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Qianmiqiao buried hill, which is a high-yield burial hill pool, was discovered at Dagang oilfield in 1998. To employ the integrated geological and geophysical research at Qianmiqiao area, it is very valuable and meaningful for the petroleum exploration of Bohai Bay Basin and even the whole country. Based on the previous results, this paper is carried out from the research on Huanghua depression, following the law, i.e. the deep part constrains the shallow, the regional constrains the local, takes the geophysical research in Qianmiqiao oilfield, discusses the formation history of burial hills, burial history, thermal history, the generated and expelling history of hydrocarbon, and migration characteristics, probes into the formation of burial hill pool. This paper uses the gravity and magnetic methods which are based on potential field, with natural sources, configures the inner structure of the earth according to the difference in the density and magnetism of the rock. The geophysical characteristics of Dagang oil field is that it is an area with positive Buge gravity anomal. The upheaval of Moho boundary is in mirror symmetry with the depression of the basin's basement. The positive and negative anomaly distributein axis symmetry, and the orientation is NNE. The thickness of the crust gradually reduces from west to east, from land to sea. The depth gradient strip of Curie surface is similar to Moho boundary, whereas their local buried depth is different. Local fractures imply that the orientation of base rock fractures is NNE-NE, and the base rock is intersected by the fractures of the same/ later term, whose orientation is NW, so the base rock likes rhombic mosaic. The results of tomography show that there exists significant asymmetry in vertical and horizontal direction in the velocity configuration of Huanghua depression. From Dezhou to Tianjin, there exits high-speed block, which extends from south to north. The bottom of this high-speed block is in good agreement with the depth of Moho boundary. Hence we can conclude that the high-speed block is actually the crystal basement. According to seismic data, well data and outcrop data, Huanghua depression can be divided into four structure layers, i.e. Pi,2-T, Ji,2-K, E, N-Q. Qianmiqiao burial hills undergo many tectonic movement, where reverse faults in developed in inner burial hill from Indosinian stage to Yanshanian stage, the normal faults extended in Himalayan stage. Under the influence of tectonic movements, the burial hills show three layers, i.e. the reverse rushing faults in buried hills, paleo-residual hill, and extended horst block. The evolution of burial hills can be divided into four stages: steady raising period from Calenonian to early Hercynian, rushing brake drape period from Indosinian to middle Yanshanian, block tilting period in early Tertiary, and heating depression period from late Tertiary to Quaternary. The basin modeling softwares BasinMod 1-D and Basin 2-D, which are made by PRA corporation, are used in this paper, according to the requirement, corresponding geological model is designed. And we model the burial history, thermal history, hydrocarbon generation and hydrocarbon expelling history of Qianmiqiao area. The results show that present bury depth is the deepest in the geological history, the sedimentary rate of Tertiary is highest and its rising rate of temperature rate is higher. During sedimentary history, there is no large erosion, and in the Tertiary, the deeper sediment was deposited in large space, therefore it is in favor of the conservation and transformation of oil and gas. The thermal research shows that the heat primarily comes from basement of the basin, present geotherm is the highest temperature in the geological history. Major source rock is the strata of ES3, whose organic is abundant, good-typed, maturative and of high-expulsive efficiency. The organic evolution of source rock of O has come to the overmature stage, the evolving time is long and the source rock can be easily destroyed. Therefore it is more difficult for the O formation source rock to form the huge accumulation of oil and gas than Es3 formation. In the research of oil assembling, we first calculated the characteristics of the fluid pressure of single well, then analyzed the distribution of the surplus fluid pressure of each formation and profile, and probe the first hydrocarbon migration situation and the distribution of pressure system of buried hill pool. In every formation, the pressure system of each burial hill has its own characteristics, e.g. high pressure or low pressure. In the research of secondary migration, the fluid potential is calculated while the relative low potential area is figured out. In Qianmiqiao area, the west margin faults have the low potential, and hence is the favorable reconnoiter belt.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relation between tectonic activity and oil and gas migration and accumulation is one of the major subjects studied in petroleum geology and oil and gas exploration process. Oil and gas exploration practice and understandings thus obtained over a long term have indicated that tectonic activities within hydrocarbon bearing basins had important controlling effect on oil and gas migration and accumulation, but the influence of different hydrocarbon basins and tectonic activities on migration, accumulation and distribution of oil and gas differs to certain degree. Liaohe Depression is located in the northeast strip of Baohai Gulf Basin. The two major faults, Tanlu and Yilan-Yitong fault of Tanlu fault system, which played a significant controlling role on the forming and evolution of Cenozoic hydrocarbon basins in eastern China, pass along the east and west side of the Depression. The special structural location had made Liaohe Depression different from other depressions in the Basin in terms of tectonic evolution, depositional evolution, organic evolution, oil and gas migration and accumulation, and reservoir distribution. Major reasons resulting in these differences are tectonic activities and stress effect. Through analytical study of tectonic evolution history, .depositional history, hydrocarbon evolution history, and oil and gas accumulation history in Liaohe Depression, this paper systematically discusses the controlling effect of regional right-hand rotation strike-slip tectonic activity and stress effect on forming of major hydrocarbon bearing structures, major period of hydrocarbon expulsion from source rock, major direction of secondary oil and gas migration, and distribution of oil and gas accumulations since mid-late period of Oliocene, Paleogene. It has been concluded that major oil and gas bearing anticline structures within the Depression are reversal anticlines formed by right-hand rotation strike-slip shear compressional stress, main hydrocarbon expulsion period happened in the moving period of major right-hand rotation strike-slip tectonic activity, the direction of right-hand rotation strike-slip shear compressional stress was the main direction of secondary oil and gas migration, and the discharging zone of right-hand rotation strike-slip shear compressional stress was major accumulation zone of oil and gas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To deal with some key problems in multi-component seismic exploration, some methods are introduced in this thesis based on reading amounts of papers about multi-component seismic theories and methods. First, to find a solution for the detection of the fracture density and orientation in igneous, carbonate and shale reservoirs, a large amount of which exist in domestic oil fields with low exploration and development degree, a new fast and slow shear waves separation method called Ratio Method based on S-wave splitting theory is discussed in this thesis, through which the anisotropy coefficient as well as fracture parameters such as density and azimuthal angle can be acquired. Another main point in this thesis involves the application of seismic velocity ratio (Vp/Vs) to predict the Hthological parameters of subsurface medium. To deal with the unfeasibility of velocity ratio calculation method based on time ratio due to the usually low single-noise ratio of S-wave seismic data acquired on land, a new method based on detailed velocity analysis is introduced. Third, pre-stack Kirchhoff integral migration is a new method developed in recent years, through which both S and P component seismic data as well as amplitude ratio of P/S waves can be acquired. In this thesis, the research on untilizing the P and S wave sections as well as amplitude ratio sections to interpret low-amplitude structures and lithological traps is carried out. The fast and slow shear wave separation method is then be applied respectively to detect the density and azimuthal angle of fractures in an igneous rock gas reservoir and the coal formation in a coal field. Two velocity ratio-calculating methods are applied respectively in the lithological prediction at the gas and coal field after summarizing a large amount of experimental results draw domestically and abroad. P and S wave sections as well as amplitude ratio sections are used to identify low-amplitude structures and lithological traps in the slope area of a oil-bearing sedimentary basin. The calculated data concerning fracture density and azimuthal angle through the introduced method matches well with the regional stress and actual drilling data. The predicted lithological data reflects the actual drilling data. Some of the low-amplitude and lithological traps determined by Kirchhoff migration method are verified by the actual drilling data. These results indicate that these methods are very meaningful when dealing with complex oil and gas reservoir, and can be applied in other areas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gaochentou region is located in the southwest direction of Gaochentou village in Huanghua city of Hebei province. In regionally structural position, It lies in Qikou sag In the middle part of Huanghua depression, which belongs to the east part of the south Dagang structure zone in the middle part of Huanghua depression. Its' very beneficial at regional structure in Gaochentou , and It becomes the advantage area for oil and gas gathered and preserved, Sandstone reservoir of Dongying Formation is main bearing bed .Dongying Formation in Gaochentou region of Huanghua depression is consisted of set of mudstone and sandstone interbeds by deposited delta fades . Dongying Formation can be divided into 3 members from above to below: the first member of Dongying Formation (FMDF), the second member of Dongying Formation (SMDF), and third member of Dongying Formation (TMDF). The lithology of the upper part of FMDF was consisted of mostly middle-grained and fine-grained sandstone, and it is small for the oil-bearing area of the sand bodies .The lithology of the lower part is coarse-grained sandstone bodies which are well connected between sandstone bodies of wells, and the lower part was main bed of oil production in Dongying Formation; SMDF and TMDF are consisted of larger scale set of mudstone, in which the sandbodies are lenticular and pinch out quickly, and the lithology was mostly fine sandstone and silt stone, in which there are little oil and gas .Because the reservoirs in this area are largely influenced by the factors such as lithology, fault and others, and the reservoirs have the strong,heterogeneity , there exists the problem of oil-down and water-up for vertical distribution of oil and gas bearing. It is not very clearly for the three dimension distribution of sandstone , and the geology researchs is not enough. So, it can't satisfy the need of further development and production for Gaochentou oilfield.Having the key problem of oil-down and water-up and the mechanism of the reservoir for Gaochentou area, There are as follow study works, the first, is study of the high-resolution correlation of sequence stratigraphy and sedimentary microfacies. Dongying Formation was divided into three parasequence sets and each parasequence set was divided into different amount of parasequences. FMDF, as the main oil and gas producing bed, can be divided into seven parasequences. Oil and gas are discovered in six parasequences except the seventh. On the basis of study of sedimentary microfacies, the sediments of Dongying Formation are considered deposited mainly in delta front subfacies. The microfacies types of Dongying Formation are sub-water distirbutary channel, sub-water natural bank, inter distributary channel bay, distributary channel mouth dam, and delta front mat sand.Seismic facies analysis and logging-constrained inversion technique were applied by Author for transverse prediction of sandstone reservoir. Having 4 modes of interwell single sandbodies correlation technique, Author have described distribution characteristics of sandbodies, and established geological reservoir model of Gaochentou reservoir.Author presented that the reservoirs characteristic have very strong heterogeneity ,and In the section of sandstone interlayed with mudstone,the folium sandstone interlayed with each other, and the wedge shaped sandbodies pinched out in the mudstone. So the pinch-out up sandstone trap and lenticular sandstone trap are easily formed. They are most small scale overlying pinches out in the place of slope. This article applies the concept of deep basin oil to resolve reasonably the problem of which the oil is below the water in Gaochentou area. Combined with the study of sedimentary facies, reservoir and other aspects, the mechanism and patterns of deep basin oil are studied on the basis of characteristics in Gaochentou area.On the basis of the above study, the mechanism of the oil and gas' migration and accumulation in isotropic sandstone and heterogeneous sandstone are thoroughly analyzed through experiments on physical modeling. Experiments on physical modeling show that the discrepancy between sand layers with different permeability and thickness has important influence on the direction, path, and injection layer of oil's migration. At the beginning of the injection of oil and gas in high permeability sand layer, the pressure is low, the migration resistance is small, and the oil and gas are more easily displacing the water in sand. So it can act as good transformation layer or reservoir. But at the beginning of the injection of oil and gas in sand layer with low permeability, the pressure is high, the migration resistance is big, and the oil and gas are more difficultly displacing the water in sand. So it can only act as bad or worse transformation layer or reservoir. Even if it cannot act as transformation layer or reservoir, it can act as water layer or dry layer. The discrepancy between sand layers on permeability and thickness can make discrepancy in injection of oil and gas between different layers. Consequently it leads to small amount of oil and gas injection in sand layers with low permeability. Ultimately it affects the oil's accumulation and distribution in different sand layers.At Last, combining analysis of the structure and pool forming condition, The thesis has established models of reservoir formation to predict the advantage distribution of oil and gas bearing , and put forward the prospective target It is not only of theoretical signification for explosion and importance, but also has realistic value in guiding the progressive petroleum exploration and exploitation.