100 resultados para precipitation cycles


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vegetation is very sensitive to climate change. Carbon isotopes in paleosol have been widely used to contruct the propotion of plants using C3 and C4 photosynthetic pathways. δ13C of Loess organic matter were analyzed on the loess- paleosols samples from Jingchuan sections and Luochuan S4—S5 sequence. This paper presents a long carbon isotope time series, covering the last 600kyr. δ13C record of Loess organic matter in Jingchuan is correlated with marine oxygen isotope records. Basing on former research work, this paper discusses temperature, rainfall and P CO2 effect on δ13Corg value. In the interglacial periods, carbon isotope is more sensitive than other proxies and indicates several climate fluctuations. The main conclusions are as follows: 1. Obtained δ13C composition from paleosols and loess sediments in Jingchuan range of -20.0‰ to -24.6‰, the maximum biomass of C4 is 35%, indicating a C3 and C4 mixed steppe with C3 dominated. C4 plant is not always expansion during paleosols periods. The minimum values of Jingchuan section appeared in S4 soil, and the vegetation was almost pure C3 plant at that time. δ13Corg value in S5-2 is also lower than loess in S5, reaching the minimum valus of S5 soil. 2. PCO2 variation has little impact on δ13Corg value in interglacial periods for the last 600kyr. The correlation between δ13Corg value curve and magnetic susceptibility curve as proxy of summer monsoon in general, means summer monsoon drive C4 plant expansion during glacial and interglacial. 3. The lowerδ13Corg values in S4 and S5-2 appear at Jingchuan and Luochuan, suggest origin from woodland or C3 grassland. Whatever vegetation it is, indicate strengthened East Asian summer monsoon and increase of precipitation. C4 plant percentage is lower in S5-1 and S1 which have stronger summer monsoon, than S0 and S2. And it also indicates increase of precipitation.δ13Corg values has not always non-linearity correlation with summer monsoon. 4. The maximum entroy spectral analysis of δ13C values of the last 600kyr indicates there is 21 kyr cycles in Loess sequence. It means that summer monsoon in the Chinese Loess Plateau also has the precession cycles like its origin low latitude.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is known that global climate changed from the early Tertiary “Green House” to the Quaternary “Ice House” of cyclic glacial-interglacial climatic changes. Since the middle Pleistocene, the climate cycles changed from 40 kyr to 100 kyr, and the amplitudes of climatic fluctuations increased significantly. Therefore, it is important to study the climate changes since the middle Pleistocene. The loess-paleosol sequence in China is considered as one of the most continuous continental records of the last 2.58 Ma. Paleoclimatic and environmental changes have been widely extracted through various climatic parameters. However, the history of paleovegetation on the Loess Plateau still remains unclear. Did an extensive broadleaf forest ever exist on the Loess Plateau? Pollen preserved in the loess and paleosol provides a direct record for vegetation and paleoenvironmental change on the Plateau. However, because it is difficult to extract sufficient pollen grains from loess, the pollen record since the middle Pleistocene especially in the central part of the Chinese Loess Plateau has not been well studied. So we preliminarily focus on the palynological records of the loess-paleosol sequence spanning the last 630 kyr at Luochuan and aim to understand the evolution of vegetation and climate change on the Chinese Loess Plateau. The main results and conclusions are as follows: 1. The palynological results show that the grassland has been a dominant vegetation in the Luochuan area since 630 kyr, even during the intervals of relatively warm and wet climatic conditions. 2. The pollen concentration of Luochuan section sharply decreases from the bottom of S1 to downward depth. This decrease can be attributed to depositional environment rather than climate change. In loess, not only oxidation, but also the PH of deposits and bacteria or fungi have been able to degrade sporopollenin. 3. The paleoclimatic condition during S4 stage, characterized with warmer condition during the early stage, was warmer and wetter than that during S5 in Luochuan area. Paleoclimate was warmer and wetter during the early stage of S5 and became colder and drier later. The special pedogenic features of S5-I can be attributed to a prolonged pedogenic duration rather than a warm-wet climate. 4. Evidence from pollen assemblage suggests that the Holocene vegetation has been affected by human impacts, especially after the Yangshao Culture. 5. The present steppe environment on the loess plateau is mainly due to natural conditions. Temperature, seasonal precipitation and soil structure are three important factors which control the vegetation type. 6. The vegetation on the loess plateau is characterized with zonal or azonal distribution. So local conditions should be taken into account when recover natural vegetation. Finally, the restoration and reconstruction of ecosystem on the loess plateau area should be focused on planting grassland rather than forests.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atmospheric dust as an important factor for climate feedbacks is mainly derived from and drove by the aeolian activities of the semi-arid regions in Asia. Therefore, reconstructing the history of aeolian activities in this region has a great significance in understanding the dynamics of past and future climate changes. This paper made a systematical sedimentology, geochemisty and high-resolution chronology analysis on the sediments from the Xiarinao Lake, which located in Hunshandake Desert, Inner Mongolia, and compared with the meteorological records for identifying the indicator of aeolian activities and climate changes. Based on above work, the evolution history of the aeolian activities and climate changes since 11,000 a BP was reconstructed and the dynamics of the aeolian activities and climate changes in the Hunshandake Desert was discussed. The indicator of aeolian activities was established through the comparison of the clastic and chemical records with the meteorological registers in recent 50 years: 1. The sediments of Xiarinao Lake are mainly derived from eaolian clastic materials and composed of two major components: one is the sand fraction (<4 ) similar to the composition of sand dunes, the other is the silt fraction (>4 ) similar to the atmospheric dust. The sand content and the median grain size, particularly the sand content, show a close association with the intensity of wind, indicating that the particle-size composition of the sediments reflect the variations of the aeolian activities. 2. The proportion of soluble salts relative to the total carbonates in the sediments was correlated to the arid degree registered in meteorological records, suggesting that arid degree might be associated with changes of wind speed and the relative proportion of soluble salts to the total carbonate could be used as the indicator of aridity. 3. The δ18O of authigenic calcite in the Xiarinao Lake show a well correlation with both the atmosphere precipitation and variation of the moisture indicated by the concentrations of soluble salts, suggesting that δ18O of anthigenic calcite is a reliable indicator of humidity. Based on above studies, the evolution history of the aeolian activities and climate changes since 11,000 a BP was reconstructed. At the same time, their association and underlying dynamics was discussed: 1. The evolution history of the eaolian activity was reconstructed by the sand content and median grain size. The result showed that aeolian activities had experienced several different climate periods in the Holocene: the aeolian activities fluctuated with a 500-year cycles during the interval from 10,900 to 8200 a BP; no significant aeolian activities had been developed from 8200 to 6300 a BP; during the interval of 6300 to 2600 a BP, sand content and media grain size had increased gradually, the sand content increased from about 5% to 25%, indicating the intensity of aeolian activity increased in the Hunshandake Desert; since 2600 a BP, intensity of aeolian activity has become stronger and activated the sand dunes. 2. The relative arid degree indicated by the proportion of soluble salts relative to the total carbonate show that both the wind speed and dry degree had being increased since 11,000 a BP. During the interval of 10900 to 6300 a BP, no detectable soluble salt was found in the sediments, indicating the humidity condition; the proportion increased to 20% from 6300 to 4200 a BP, showing the climate became drier; the little change of proportion (20%) suggest that the climate was relative stable during the interval of 4200 to 2600 a BP; after 2600 a BP, the proportion increased, showing the climate became further dry. 3. The δ18O evolution of the lake water was established through analysis of authigenetic calcite δ18O for revealing the variations of relative effective humidity in the Hunshandake Desert. δ18O maintained around -6 ‰ during the interval of 10900 to 8200 a BP, showing the climate was a little dry relative to that of the whole Holocnene; in the period of 8200 to 6300 a BP, δ18O had the most negative values, indicating that it was the most humid interval in Holocene; from 6300 to 4200 a BP, δ18O increased from about -7.5 ‰ to about -3 ‰ gradually, suggesting increased aridity; since 4200 a BP, the climate has become stable and dry. On the whole, the records in this study show that the variation of the relative humidity and aridity is consistent with that of summer monsoon in the Hunshandake Desert. The relationships among the grain size, soluble salts relative content, and the authigenic calcite δ18O indicate aeolian activities is controlled by the aridity in the studied area, and the increased aeolian activities is closely associated with the temperature changes under the relative dry condition. The high wind speed under the low temperature leads to the increased aeolian activity, and the temperature change associated with the aeolian activities might be related with the perturbations of the Siberian High Pressure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The past two decades have witnessed an unprecedented growth of interest in the palaeoenvironmental significance of the Pleistocene loess deposits in northern China. However, it is only several years ago that the Tertiary red clay sequence underlying Pleistocene loess attracted much attention. One of the major advances in recent studies of eolian deposits on the Loess Plateau is the verification of the eolian origin for the Tertiary red clay sediments. The evidence of the eolian origin for the red clay is mainly from geochemical and sedimentological studies. However, sedimentological studies of the red clay deposits are still few compared with those of the overlying loess sediments. To date, the red clay sections located near Xifeng, Baoji, Lantian, Jiaxian, and Lingtai have been studied, with an emphasis on magnetostratigraphy. These sections have a basal age ranging from ~4.3 Ma to ~7.0 Ma. The thickness of the sections varies significantly, depending perhaps on the development of local geomorphological conditions and the drainage system. Although the stratigraphy of the red clay sections has been recorded in some detail, correlation of the red clay sequences has not yet been undertaken. Geological records (Sun J. et al., 1998) have shown that during glacial periods of the Quaternary the deserts in northem China were greatly expanded compared with modern desert distribution. During interglacial periods, desert areas contracted and retreated mostly to northwestern China because of the increase in inland penetration of monsoonal precipitation. According to pedogenic characteristics of the red clay deposits, the climatic conditions of the Loess Plateau is warmer and wetter generally in the Neogene than in the late Pleistocene. Panicle analyses show that grain size distribution of the red clay sequence is similar to that of the paleosols in the Pleistocene loess record, thus implying a relatively remote provenance of the red clay materials. However, the quantitative or semiquantitative estimates of the distance from the source region to the Loess Plateau during the red clay development remains to be investigated. In this study, magnetostratigraphic and sedimentological studies are conducted at two thick red clay sequences-Jingchuan and Lingtai section. The objectives of these studies are focused on further sedimentological evidence for the eolian origin of the red clay, correlation of red clay sequences, provenance of the red clay, and the palaeoclimate reconstruction in the Neogene. Paleomagnetic studies show that the Jingchuan red clay has a basal age of 8.0 Ma, which is 1 million years older than the previously studied Lingtai section. The Lingtai red clay sequence was divided into five units on the basis of pedogenica characteristics (Ding et al., 1999a). The Jingchuan red clay sequence, however, can be lithologically divided into six units according to field observations. The upper five units of the Jingchuan red clay can generally correlate well with the five units of the Lingtai red clay. Comparison of magnetic susceptibility and color reflectance records of four red clay sections suggests that the Lingtai red clay sequence can be the type-section of the Neogene red clay deposits in northern China. Pleistocene loess and modem dust deposits have a unimodal grain-size distribution. The red clay sediments at Jingchuan and Lingtai also have a unimodal grain-size distribution especially similar to the paleosols in the Pleistocene loess record. Sedimentological studies of a north-south transect of loess deposits above S2 on the Loess Plateau show that loess deposits had distinct temporal and spatial sedimentary differentiation. The characteristics of such sedimentary differentiation can be well presented in a triangular diagram of normalized median grain size, normalized skewness, and normalized kurtosis. The triangular diagrams of the red clay-loess sequence at Lingtai and Jingchuan indicate that loess-paleosol-red clay may be transported and sorted by the same agent wind, thus extending the eolian record in the Loess Plateau from 2.6 Ma back to about 8.0 Ma. It has been recognized that during the last glacial maximum (LGM) the deserts in northern China had a distribution similar to the present, whereas during the Holocene Optimum the deserts retreated to the area west of the Helan Mountains. Advance-retreat cycles of the deserts will lead to changes in the distance of the Loess Plateau to the dust source regions, thereby controlling changes in grain size of the loess deposited in a specific site. To observe spatial changes in sedimentological characteristics of loess during the last glacial-interglacial cycle, the texture of loess was measured along the north-south transect of the Loess Plateau. Since the southern margin of the Mu Us desert during the LGM is already known, several models of grain size parameters versus the minimum distance from the source region to depositional areas were developed. According to these semiquantitative models, the minimum distance from the source region to Lingtai and Jingchuan areas is about 600 km during the Neogene. Therefore the estimated provenance of the Tertiary red clay deposits is the areas now occupied by the Badain Jaran desert and arid regions west of it. The ratio of the free iron to total iron concentration attests to being a good proxy indicator for the summer monsoon evolution. The Lingtai Fe_20_3 ratio record shows high values over three time intervals: 4.8-4.1 Ma, 3.4-2.6 Ma, and during the interglacial periods of the past 0.5 Ma. The increase in summer monsoon intensity over the three intervals also coincides with the well-developed soil characteristics. It is therefore concluded that the East-Asia summer monsoon has experienced a non-linear evolution since the late Miocene. In general, the East Asia summer monsoon was stronger in Neogene than in Quaternary and the strongest East Asia summer monsoon may occur between 4.1 and 4.8 Ma. The relatively small ice volume and high global temperature may be responsible for the strong summer monsoon during the early Pliocene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon is an essential element for life, food and energy. It is also a key element in the greenhouse gases and therefore plays a vital role in climatic changes. The rapid increase in atmospheric concentration of CO_2 over the past 150 years, reaching current concentrations of about 370 ppmv, corresponds with combustion of fossii fuels since the beginning of the industrial age. Conversion of forested land to agricultural use has also redistributed carbon from plants and soils to the atmosphere. These human activities have significantly altered the global carbon cycle. Understanding the consequences of these activities in the coming decades is critical for formulating economic, energy, technology, trade, and security policies that will affect civilization for generations. Under the auspices of the International Geosphere-Biosphere Programme (IGBP), several large international scientific efforts are focused on elucidating the various aspects of the global carbon cycle of the past decade. It is only possible to balance the global carbon cycle for the 1990s if there is net carbon uptake by terrestrial ecosystems of around 2 Pg C/a. There are now some independent, direct evidences for the existence of such a sink. Policymarkers involved in the UN Framework Convention on Climate Change (UN-FCCC) are striving to reach consensuses on a 'safe path' for future emissions, the credible predictions on where and how long the terrestrial sink will either persist at its current level, or grow/decline in the future, are important to advice the policy process. The changes of terrestrial carbon storage depend not only on human activities, but also on biogeochemical and climatological processes and their interaction with the carbon cycles. In this thesis, the climate-induced changes and human-induced changes of carbon storage in China since the past 20,000 years are examined. Based on the data of the soil profiles investigated during China's Second National Soil Survey (1979-1989), the forest biomass measured during China's Fourth National Forest Resource Inventory (1989-1993), the grass biomass investigated during the First National Grassland Resource Survey (1980-1991), and the data collected from a collection of published literatures, the current terrestrial carbon storage in China is estimated to -144.1 Pg C, including -136.8 Pg C in soil and -7.3 Pg C in vegetation. The soil organic (SOC) and inorganic carbon (SIC) storage are -78.2 Pg C and -58.6 Pg C, respectively. In the vegetation reservoir, the forest carbon storage is -5.3 Pg C, and the other of-1.4 Pg C is in the grassland. Under the natural conditions, the SOC, SIC, forest and grassland carbon storage are -85.3 Pg C, -62.6 Pg C, -24.5 Pg C and -5.3 Pg C, respectively. Thus, -29.6 Pg C organic carbon has been lost due to land use with a decrease of -20.6%. At the same time, the SIC storage also has been decreased by -4.0 Pg C (-6.4%). These suggest that human activity has caused significant carbon loss in terrestrial carbon storage of China, especially in the forest ecosystem (-76% loss). Using the Paleocarbon Model (PCM) developed by Wu et al. in this paper, total terrestrial organic carbon storage in China in the Last Glacial Maximum (LGM) was -114.8 Pg C, including -23.1 Pg C in vegetation and -86.7 Pg C in soil. At the Middle Holocene (MH), the vegetation, soil and total carbon were -37.3 Pg C, -93.9 Pg C and -136.0 Pg C, respectively. This implies a gain of-21.2 Pg C in the terrestrial carbon storage from LGM to HM mainly due to the temperature increase. However, a loss of-14.4 Pg C of terrestrial organic carbon occurred in China under the current condition (before 1850) compared with the MH time, mainly due to the precipitation decrease associated with the weakening of the Asian summer monsoon. These results also suggest that the terrestrial ecosystem in China has a substantial potential in the restoration of carbon storage. This might be expected to provide an efficient way to mitigate the greenhouse warming through land management practices. Assuming that half of the carbon loss in the degraded terrestrial ecosystem in current forest and grass areas are restored during the next 50 years or so, the terrestrial ecosystem in China may sequestrate -12.0 Pg of organic carbon from the atmosphere, which represents a considerable offset to the industry's CO2 emission. If the ' Anthropocene' Era will be another climate optimum like MH due to the greenhouse effect, the sequestration would be increased again by -4.3 - 9.0 Pg C in China.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sediment cores DH99a and DH99b recovered in the central part of Daihai Lake in north-central China were analysed at 2- to 4-crn intervals for grain-size distribution. Grain-size distributions of the lake sediments are inferred to be a proxy for past changes in East Asian monsoon precipitation, such that greater silt-size percentage and higher median grain size reflect increased monsoonal precipitation rates. The grain-size record of Daihai Lake sediments spanning the last ca 11,000 yr indicates that the monsoonal precipitation in the lake region can be divided into three stages: the Early, Middle and Late Holocene. During the Early Holocene before ca 7900 cal yr BP, the median grain size (Md) and the silt-fraction content were relatively low and constant, suggesting relatively low precipitation over the lake region. The Middle Holocene between ca 7900 and 3100 cal yr BP was marked by intensified and highly variable monsoonal precipitation, as indicated by high and variable Md values and silt contents of the lake sediments. During this period, average precipitation rate gradually increased from ca 7900 to 6900 cal yr BP, displayed intense oscillations between ca 6900 and 4400 cal yr BP, and exhibited a decreasing trend while fluctuating from ca 4400 to 3100 cal yr BP Although generally high during the Middle Holocene, both the Md and the silt content assumed distinctly low values at the short intervals of ca 6500-6400, 6000-5900, 5700-5600, 4400-4200 cal yr BP, implying that monsoonal precipitation might have been significantly reduced during these intervals. During the Late Holocene since ca 3100 cal yr BP, grain-size values suggest that precipitation decreased. However, during the Late Holocene, relatively higher Md values and silt contents occurring between ca 1700 to 1000 cal yr BP may denote an intensification of hydrological cycles in the lake area. Changes in the East Asian monsoonal precipitation were not only directly linked with the changing seasonality of solar insolation resulting from progressive changes in the Earth's orbital parameters, but also may have been closely related to variations in the temperature and size of the Western Pacific Warm Pool, in the intensity of the El Nino-Southern Oscillation, and in the path and strength of the North Equatorial Current in the western Pacific.