210 resultados para polarization direction
Resumo:
In this paper a compact polarization beam splitter based on a deformed photonic crystal directional coupler is designed and simulated. The transverse-electric (TE) guided mode and transverse-magnetic (TM) guided mode are split due to different guiding mechanisms. The effect of the shape deformation of the air holes on the coupler is studied. It discovered that the coupling strength of the coupled waveguides is strongly enhanced by introducing elliptical airholes, which reduce the device length to less than 18.5 mu m. A finite-difference time-domain simulation is performed to evaluate the performance of the device, and the extinction ratios for both TE and TM polarized light are higher than 20 dB.
Resumo:
Using analytical expressions for the polarization field in GaN quantum dot, and an approximation by separating the potential into a radial and an axial, we investigate theoretically the quantum-confined Stark effects. The electron and hole energy levels and optical transition energies are calculated in the presence of an electric field in different directions. The results show that the electron and hole energy levels and the optical transition energies can cause redshifts for the lateral electric field and blueshifts for the vertical field. The rotational direction of electric field can also change the energy shift.
Resumo:
A comparative study of the steady-state and transient optical properties was made between InGaAs/GaAs quantum do chains (QDCs) and quantum dots (QDs). It was found that the photoluminescence (PL) decay time of QDCs exhibited a strong photon energy dependence, while it was less sensitive in QDs. The PL decay time increased much faster with the excitation power in the QDCs than that in QDs. When the excitation power was large enough, the PL decay time tended to be saturated. In addition, it was also found that the PL rise time was much shorter in QDCs than in QDs. All these experimental results show that there is a strong carrier coupling along the chain direction in the QD chain structure. The polarization PL measurements further confirm the carrier transfer process along the chain direction.
Resumo:
The gain saturation behaviors and noise figure are numerically analyzed for quantum-dot semiconductor optical amplifiers (QD-SOAs). The carrier and photon distributions in the longitudinal direction as well as the photon energy dependent facet reflectivity are accounted in the rate equations, which are solved with output amplified spontaneous emission spectrum as iterative variables. The longitudinal distributions of the occupation probabilities and spectral-hole burning are presented for electrons in the excited and ground states of quantum dots. The saturation output power 19.7 dBm and device gain 20.6 dB are obtained for a QD-SOA with the cavity length of 6 rum at the bias current of 500 mA. The influences of them electron intradot relaxation time and the QD capture time on the gain spectrum are simulated with the relaxation time of 1, 30, and 60 ps and capture time of 1, 5, and 10 ps. The noise figure as low as 3.5 dB is expected due to the strong polarization sensitive spontaneous emission. The characteristics of gain saturation and noise figure versus input signal power for QD-SOAs are similar to that of semiconductor. linear optical amplifiers with gain clamping by vertical laser fields.
Resumo:
Origin of polarization sensitivity of photonic wire waveguides (PWWs) is analysed and the effective refractive indices of two different polarization states are calculated by the three-dimensional full-vector beam propagation method. We find that PWWs are polarization insensitive if the distribution of its refractive index is uniform and the cross section is square. An MRR based on such a polarization-insensitive PWW is fabricated on an 8-inch silicon-on-insulator wafer using 248-nm deep ultraviolet lithography and reactive ion etching. The quasi-TE mode is resonant at 1542.25 nm and 1558.90 nm, and the quasi-TM mode is resonant at 1542.12 nm and 1558.94 nm. The corresponding polarization shift is 0.13 nm at the shorter wavelength and 0.04 nm at the longer wavelength. Thus the fabricated device is polarization independent. The extinction ratio is larger than 10 dB. The 3 dB bandwidth is about 2.5 nm and the Qvalue is about 620 at 1558.90 nm.
Resumo:
We have investigated the steady-state and transient optical properties of InGaAs/GaAs quantum chains and found that the photoluminescence (PL) decay time exhibits a strong photon energy dependence. It increases with the decrease of the emission energy. It is also found that the PL decay time increases with the excitation power. When the excitation power is large enough the PL decay time tends to be saturated. All these experimental results show that there is a strong carrier coupling along the chain direction in the quantum dot chain structure. The polarization PL measurements further confirm the carrier transfer process along the chain direction.
Resumo:
Strongly vertically coupled InAs/GaAs quantum dots (QDs) with modulation doping are investigated, and polarization dependence of two-color absorptions was observed. Analysis of photoluminescence (PL) and absorption spectra shows that s-polarized absorptions at. 10.0 and 13.4 mu m, stem from the first excited state E-1 and the second excited state E-2 in the QDs to the bound state E-InGaAs in the InGaAs spacer, respectively, whereas p-polarized absorptions at 10.0 and 8.2 mu m stem from the first excited state E-1 and the ground E-g in the QDs to the bound state E-InGaAs in the InGaAs spacer, respectively. These measurements illustrate that transitions from excited states are more sensitive to normal incidence, which are very important in designing QD infrared detector. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Elastic constants, the bulk modulus, Young's modulus, band-gap bowing coefficients, spontaneous and piezoelectric polarizations, and piezoelectric coefficients of hexagonal AlxGa1-xN ternary alloys are calculated using first-principles methods. The fully relaxed structures and the structures subjected to homogeneous biaxial and uniaxial tension are investigated. We show that the biaxial tension in the plane perpendicular to the c axis and the uniaxial tension along the c axis all reduce the bulk modulus, whereas they reduce and enhance Young's modulus, respectively. We find that the biaxial and uniaxial tension can enhance the bowing coefficients. We also find that the biaxial tension can enhance the total polarization, while the uniaxial tension will suppress the total polarization. (C) 2008 American Institute of Physics.
Resumo:
We theoretically study the spatial behaviors of spin precessions modulated by an effective magnetic field in a two-dimensional electron system with spin-orbit interaction. Through analysis of interaction between the spin and the effective magnetic field, we find some laws of spin precession in the system, by which we explain some previous phenomena of spin precession, and predict a controllable electron spin polarization wave in [001]-grown quantum wells. The shape of the wave, like water wave, mostly are ellipse-like or circle-like, and the wavelength is anisotropic in the quantum wells with two unequal coupling strengths of the Rashba and Dresselhaus interactions, and is isotropic in the quantum wells with only one spin orbit interaction.
Resumo:
Generally, dipole mode is a doubly degenerate mode. Theoretical calculations have indicated that the single dipole mode of two-dimensional photonic crystal single point defect cavity shows high polarization property. We present a structure with elongated lattice, which only supports a single y-dipole mode. With this structure we can eliminate the degeneracy, control the lasing action of the cavity and demonstrate the high polarization property of the single dipole mode. In our experiment, the polarization extinction ratio of the y-dipole mode is as high as 51 1.
Resumo:
The dipole mode in triangular photonic crystal single defect cavity is degenerate. By deforming the lattice in photonic crystal we can obtain non-degenerate dipole modes. Lattice deforming in the whole photonic crystal destroys the characteristic of symmetry, so the distribution of the electromagnetic field is affected and the polarization of the electromagnetic field is also changed. Lattice deforming divides the degenerate dipole mode into the x-dipole mode and the y-dipole mode. It is found that the non-degenerate modes have better properties of polarization. So the high polarization and single dipole mode photonic crystal laser can be achieved by deforming the lattice of photonic crystal. In this paper, we simulated the cavity in photonic crystal slab and mainly calculated the quality factor of x-dipole mode under different deforming conditions and with different filling factors. The properties of polarization of x-dipole and y-dipole modes are also calculated. It is found that the ratio of intensities of E-x to E-y in x-dipole mode and that of E-y to E-x in y-dipole mode are 44 and 27, respectively.
Resumo:
In this work, we present the design of an integrated photonic-crystal polarization beam splitter (PC-PBS) and a low-loss photonic-crystal 60 waveguide bend. Firstly, the modal properties of the PC-PBS and the mechanism of the low-loss waveguide bend are investigated by the two-dimensional finite-difference time-domain (FDTD) method, and then the integration of the two devices is studied. It shows that, although the individual devices perform well separately, the performance of the integrated circuit is poor due to the multi-mode property of the PC-PBS. By introducing deformed airhole structures, a single-mode PC-PBS is proposed, which significantly enhance the performance of the circuit with the extinction ratios remaining above 20dB for both transverse-electric (TE) and transverse-magnetic (TM) polarizations. Both the specific result and the general idea of integration design are promising in the photonic crystal integrated circuits in the future. (C) 2009 Optical Society of America
Novel triplexing-filter design using silica-based direction coupler and an arrayed waveguide grating
Resumo:
A new triplexing filter based on a silica direction coupler and an arrayed waveguide grating is presented. Using a combination of a direction coupler and an arrayed waveguide grating, a 1310-nm channel is multiplexed and 1490- and 1550-nm channels are demultiplexed for fiber-to-the-home. The direction coupler is used to coarsely separate the 1310-nm channel from the 1490- and 1550-nm channels. Subsequently, an arrayed waveguide grating is used to demultiplex the 1490- from 1550-nm channel. The simulated spectra show the 1-dB bandwidth of 110 nm for the 1310-nm channel and 20 and 20.5 nm for the 1490- and 1550-nm channels. The insertion loss is only 0.15 dB for 1310 nm and 5 dB for 1490 and 1550 nm. The crosstalk between the 1490- and 1550-nm channels was less than -35 dB. (C) 2009 Society of Photo-Optical Instrumentation Engineers. [DOI 10.1117/1.3065508]
Resumo:
Based on the effective-mass model, the lower energies of the electron and the hole of ZnO/MgxZn1-xO superlattices are calculated. Because of the mismatch of the lattice constant between the ZnO well and the MgxZn1-xO barrier, piezoelectric and spontaneous polarization exist in ZnO/MgxZn1-xO superlattices and a macroscopical internal electric held is found when well width L-w >4 nm and Mg concentration x > 0.2. The parameters of ZnO/MgxZn1-xO superlattices such as lattice constant, band offset, etc. are also proposed. Through calculations, we found the internal electric field can change the lowest energies of the electron and hole to 105.4 and 85.1 meV when well width L-w up to 70 angstrom, which will influence the electronic and optical properties of ZnO/MgxZn1-xO superlattices greatly, while the Rashba effect from the internal electric field is so small that it can be neglected. The ground state exciton energies with different Mg concentration x are also calculated by variational method, our results are very close to the experimental results when Mg concentration x <= 0.3. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We have theoretically investigated ballistic electron transport through a combination of magnetic-electric barrier based on a vertical ferromagnet/two-dimensional electron gas/ferromagnet sandwich structure, which can be experimentally realized by depositing asymmetric metallic magnetic stripes both on top and bottom of modulation-doped semiconductor heterostructures. Our numerical results have confirmed the existence of finite spin polarization even though only antisymmetric stray field B-z is considered. By switching the relative magnetization of ferromagnetic layers, the device in discussion shows evident magnetoconductance. In particular, both spin polarization and magnetoconductance can be efficiently enhanced by proper electrostatic barrier up to the optimal value relying on the specific magnetic-electric modulation. (C) 2009 American Institute of Physics. [DOI 10.1063/1.3041477]