125 resultados para pacific decadal oscillation
Resumo:
With the intermediate-complexity Zebiak-Cane model, we investigate the 'spring predictability barrier' (SPB) problem for El Nino events by tracing the evolution of conditional nonlinear optimal perturbation (CNOP), where CNOP is superimposed on the El Nino events and acts as the initial error with the biggest negative effect on the El Nino prediction. We show that the evolution of CNOP-type errors has obvious seasonal dependence and yields a significant SPB, with the most severe occurring in predictions made before the boreal spring in the growth phase of El Nino. The CNOP-type errors can be classified into two types: one possessing a sea-surface-temperature anomaly pattern with negative anomalies in the equatorial central-western Pacific, positive anomalies in the equatorial eastern Pacific, and a thermocline depth anomaly pattern with positive anomalies along the Equator, and another with patterns almost opposite to those of the former type. In predictions through the spring in the growth phase of El Nino, the initial error with the worst effect on the prediction tends to be the latter type of CNOP error, whereas in predictions through the spring in the decaying phase, the initial error with the biggest negative effect on the prediction is inclined to be the former type of CNOP error. Although the linear singular vector (LSV)-type errors also have patterns similar to the CNOP-type errors, they cover a more localized area than the CNOP-type errors and cause a much smaller prediction error, yielding a less significant SPB. Random errors in the initial conditions are also superimposed on El Nino events to investigate the SPB. We find that, whenever the predictions start, the random errors neither exhibit an obvious season-dependent evolution nor yield a large prediction error, and thus may not be responsible for the SPB phenomenon for El Nino events. These results suggest that the occurrence of the SPB is closely related to particular initial error patterns. The two kinds of CNOP-type error are most likely to cause a significant SPB. They have opposite signs and, consequently, opposite growth behaviours, a result which may demonstrate two dynamical mechanisms of error growth related to SPB: in one case, the errors grow in a manner similar to El Nino; in the other, the errors develop with a tendency opposite to El Nino. The two types of CNOP error may be most likely to provide the information regarding the 'sensitive area' of El Nino-Southern Oscillation (ENSO) predictions. If these types of initial error exist in realistic ENSO predictions and if a target method or a data assimilation approach can filter them, the ENSO forecast skill may be improved. Copyright (C) 2009 Royal Meteorological Society
Resumo:
To investigate the interaction between the tropical Pacific and China seas a variable-grid global ocean circulation model with fine grid[(1/6)degrees] covering the area from 20degreesS to 50degreesN and from 99degrees to 150degreesE is developed. Numerical computation of the annually cyclic circulation fields is performed. The results of the annual mean zonal currents and deep to abyssal western boundary currents in the equatorial Pacific Ocean are reported. The North Equatorial Current,the North Equatorial Countercurrent, the South Equatorial Current and the Equatorial Undercurrent are fairly well simulated. The model well reproduces the northward flowing abyssal western boundary current. From the model results a lower deep western boundary current east of the Bismarck-Solomon-New Hebrides Island chain at depths around 2 000 in has been found. The model results also show that the currents in the equatorial Pacific Ocean have multi-layer structures both in zonal currents and western boundary currents, indicating that the global ocean overturning thermohaline circulation appears of multi-layer pattern.
Resumo:
An assimilation data set based on the GFDL MOM3 model and the NODC XBT data set is used to examine the circulation in the western tropical Pacific and its seasonal variations. The assimilated and observed velocities and transports of the mean circulation agree well. Transports of the North Equatorial Current (NEC), Mindanao Current (MC), North Equatorial Countercurrent (NECC) west of 140degreesE and Kuroshio origin estimated with the assimilation data display the seasonal cycles, roughly strong in boreal spring and weak in autumn, with a little phase difference. The NECC transport also has a semi-annual fluctuation resulting from the phase lag between seasonal cycles of two tropical gyres' recirculations. Strong in summer during the southeast monsoon period, the seasonal cycle of the Indonesian throughflow (ITF) is somewhat different from those of its upstreams, the MC and New Guinea Coastal Current (NGCC), implying the monsoon's impact on it.
Resumo:
Based on the data analysis, this study further explores the characteristics of East Asian winter monsoon (hereafter, EAWM, for brevity) as well as the related air-sea-land system, and illustrates how and to what degree anomalous signals of the subsequent Asian summer monsoon are rooted in the preceding EAWM activity. We identified an important air-sea coupled mode, i.e., the EAWM mode illustrated in Section 3. In cold seasons, strong EAWM-related air-sea two-way interaction is responsible for the development and persistence of the SSTA pattern of EAWM mode. As a consequence, the key regions, i.e., the western Pacific and South China Sea (hereafter, SCS, for brevity), are dominated by such an SSTA pattern from the winter to the following summer. In the strong EAWM years, the deficient snow cover dominates eastern Tibetan Plateau in winter, and in spring, this anomaly pattern is further strengthened and extended to the northwestern side of Tibetan Plateau. Thus, the combined effect of strong EAWM-related SSTA and Tibetan snow cover constitutes an important factor in modulating the Asian monsoon circulation. The active role of the EAWM activity as well as the related air-sea-land interaction would, in the subsequent seasons, lead to: 1) the enhancement of SCS monsoon and related stronger rainfall; 2) the northward displacement of subtropical high during Meiyu period and the related deficient rainfall over Meiyu rainband; 3) above-normal precipitation over the regions from northern Japan to northeastern China in summer; 4) more rainfall over the Arabian Sea and Northeast India, while less rainfall over southwest India and the Bay of Bengal. The strong EAWM-related air-sea interaction shows, to some degree, precursory signals to the following Asian summer monsoon. However, the mechanism for the variability of Indian summer monsoon subsequent to the strong EAWM years remains uncertain.
Resumo:
In this study we describe the velocity structure and transport of the North Equatorial Current (NEC), the Kuroshio, and the Mindanao Current (MC) using repeated hydrographic sections near the Philippine coast. A most striking feature of the current system in the region is the undercurrent structure below the surface flow. Both the Luzon Undercurrent and the Mindanao Undercurrent appear to be permanent phenomena. The present data set also provides an estimate of the mean circulation diagram (relative to 1500 dbar) that involves a NEC transport of 41 Sverdrups (Sv), a Kuroshio transport of 14 Sv, and a MC transport of 27 Sv, inducing a mass balance better than 1 Sv within the region enclosed by stations. The circulation diagram is insensitive to vertical displacements of the reference level within the depth range between 1500 and 2500 dbar. Transport fluctuations are, in general, consistent with earlier observations; that is, the NEC and the Kuroshio vary in the same phase with a seasonal signal superimposed with interannual variations, and the transport of the MC is dominated by a quasi-biennial oscillation. Dynamic height distributions are also examined to explore the dynamics of the current system.
Resumo:
Direct air-sea flux measurements were made on RN Kexue #1 at 40 degrees S, 156 degrees E during the Tropical Ocean Global Atmosphere (TOGA) Coupled Ocean-Atmospheric Response Experiment (COARE) Intensive Observation Period (IOP). An array of six accelerometers was used to measure the motion of the anchored ship, and a sonic anemometer and Lyman-alpha hygrometer were used to measure the turbulent wind vector and specific humidity. The contamination of the turbulent wind components by ship motion was largely removed by an improvement of a procedure due to Shao based on the acceleration signals. The scheme of the wind correction for ship motion is briefly outlined. Results are presented from data for the best wind direction relative to the ship to minimize flow distortion effects. Both the time series and the power spectra of the sonic-measured wind components show swell-induced ship motion contamination, which is largely removed by the accelerometer correction scheme, There was less contamination in the longitudinal wind component than in the vertical and transverse components. The spectral characteristics of the surface-layer turbulence properties are compared with those from previous land and ocean results, Momentum and latent heat fluxes were calculated by eddy correlation and compared to those estimated by the inertial dissipation method and the TOGA COARE bulk formula. The estimations of wind stress determined by eddy correlation are smaller than those from the TOGA COARE bulk formula, especially for higher wind speeds, while those from the bulk formula and inertial dissipation technique are generally in agreement. The estimations of latent heal flux from the three different methods are in reasonable agreement. The effect of the correction for ship motion on latent heat fluxes is not as large as on momentum fluxes.
Resumo:
The seasonal generation and evolution of eddies in the region of the North Pacific Subtropical Countercurrent remain poorly understood due to the scarcity of available data. We used TOPEX/POSEIDON altimetry data from 1992 to 2007 to study the eddy field in this zone. We found that velocity shear between this region and the neighboring North Equatorial Current contributes greatly to the eddy generation. Furthermore, the eddy kinetic energy level (EKE) shows an annual cycle, maximum in April/May and minimum in December/January. Analyses of the temporal and spatial distributions of the eddy field revealed clearly that the velocity shear closely related to baroclinic instability processes. The eddy field seems to be more zonal than meridional, and the energy containing length scale shows a surprising lag of 2-3 months in comparison with the 1-D and 2-D EKE level. A similar phenomenon is observed in individual eddies in this zone. The results show that in this eddy field band, the velocity shear may drive the EKE level change so that the eddy field takes another 2-3 months to grow and interact to reach a relatively stable state. This explains the seasonal evolution of identifiable eddies.
Resumo:
An ocean general circulation model (OGCM) is used to study the roles of equatorial waves and western boundary reflection in the seasonal circulation of the equatorial Indian Ocean. The western boundary reflection is defined as the total Kelvin waves leaving the western boundary, which include the reflection of the equatorial Rossby waves as well as the effects of alongshore winds, off-equatorial Rossby waves, and nonlinear processes near the western boundary. The evaluation of the reflection is based on a wave decomposition of the OGCM results and experiments with linear models. It is found that the alongshore winds along the east coast of Africa and the Rossby waves in the off-equatorial areas contribute significantly to the annual harmonics of the equatorial Kelvin waves at the western boundary. The semiannual harmonics of the Kelvin waves, on the other hand, originate primarily from a linear reflection of the equatorial Rossby waves. The dynamics of a dominant annual oscillation of sea level coexisting with the dominant semiannual oscillations of surface zonal currents in the central equatorial Indian Ocean are investigated. These sea level and zonal current patterns are found to be closely related to the linear reflections of the semiannual harmonics at the meridional boundaries. Because of the reflections, the second baroclinic mode resonates with the semiannual wind forcing; that is, the semiannual zonal currents carried by the reflected waves enhance the wind-forced currents at the central basin. Because of the different behavior of the zonal current and sea level during the reflections, the semiannual sea levels of the directly forced and reflected waves cancel each other significantly at the central basin. In the meantime, the annual harmonic of the sea level remains large, producing a dominant annual oscillation of sea level in the central equatorial Indian Ocean. The linear reflection causes the semiannual harmonics of the incoming and reflected sea levels to enhance each other at the meridional boundaries. In addition, the weak annual harmonics of sea level in the western basin, resulting from a combined effect of the western boundary reflection and the equatorial zonal wind forcing, facilitate the dominance by the semiannual harmonics near the western boundary despite the strong local wind forcing at the annual period. The Rossby waves are found to have a much larger contribution to the observed equatorial semiannual oscillations of surface zonal currents than the Kelvin waves. The westward progressive reversal of seasonal surface zonal currents along the equator in the observations is primarily due to the Rossby wave propagation.
Resumo:
温度跃层是反映海洋温度场的重要物理特性指标,对水下通讯、潜艇活动及渔业养殖、捕捞等有重要影响。本文利用中国科学院海洋研究所“中国海洋科学数据库”在中国近海及西北太平洋(110ºE-140ºE,10ºN-40ºN)的多年历史资料(1930-2002年,510143站次),基于一种改进的温跃层判定方法,分析了该海域温跃层特征量的时空分布状况。同时利用Princeton Ocean Model(POM),对中国近海,特别是东南沿海的水文结构进行了模拟,研究了海洋水文环境对逆温跃层的影响。最后根据历史海温观测资料,利用EOF分解统计技术,提出了一种适于我国近海及毗邻海域,基于现场有限层实测海温数据,快速重构海洋水温垂直结构的统计预报方法,以达到对现场温跃层的快速估计。 历史资料分析结果表明,受太阳辐射和风应力的影响,20°N以北研究海域,温跃层季节变化明显,夏季温跃层最浅、最强,冬季相反,温跃层厚度的相位明显滞后于其他变量,其在春季最薄、秋季最厚。12月份到翌年3月份,渤、黄及东海西岸,呈无跃层结构,西北太平洋部分海域从1月到3月份,也基本无跃层结构。在黄海西和东岸以及台湾海峡附近的浅滩海域,由于风力搅拌和潮混合作用,温跃层出现概率常年较低。夏季,海水层化现象在近海陆架海域得到了加强,陆架海域温跃层强度季节性变化幅度(0.31°C/m)明显大于深水区(约0.05°C/m),而前者温跃层深度和厚度的季节性变化幅度小于后者。20°N以南研究海域,温跃层季节变化不明显。逆温跃层主要出现在冬、春季节(10月-翌年5月)。受长江冲淡水和台湾暖流的影响,东南沿海区域逆温跃层持续时间最长,出现概率最大,而在山东半岛北及东沿岸、朝鲜半岛西及北岸,逆温跃层消长过程似乎和黄海暖流有关。多温跃层结构常年出现于北赤道流及对马暖流区。在黑潮入侵黄、东、南海的区域,多温跃层呈现明显不同的季节变化。在黄海中部,春季多温跃层发生概率高于夏季和秋季,在东海西部,多跃层主要出现在夏季,在南海北部,冬季和春季多温跃层发生概率大于夏季和秋季。这些变化可能主要受海表面温度变化和风力驱动的表层流的影响。 利用Princeton Ocean Model(POM),对中国东南沿海逆温跃层结构进行了模拟,模拟结果显示,长江冲淡水的季节性变化以及夏季转向与实际结果符合较好,基本再现了渤、黄、东海海域主要的环流、温盐场以及逆温跃层的分布特征和季节变化。通过数值实验发现,若无长江、黄河淡水输入,则在整个研究海域基本无逆温跃层出现,因此陆源淡水可能是河口附近逆温跃层出现的基本因素之一。长江以及暖流(黑潮和台湾暖流)流量的增加,均可在不同程度上使逆温跃层出现概率及强度、深度和厚度增加,且暖流的影响更加明显。长江对东南沿海逆温跃层的出现,特别是秋季到冬季初期,有明显的影响,使长江口海域逆温跃层位置偏向东南。暖流对于中国东南沿海的逆温跃层结构,特别是初春时期,有较大影响,使长江口海域的逆温跃层位置向东北偏移。 通过对温跃层长期变化分析得出,黄海冷水团区域,夏季温跃层强度存在3.8年左右的年际变化及18.9年左右的年代际变化,此变化可能主要表现为对当年夏季和前冬东亚地区大气气温的热力响应。东海冷涡区域,夏季温跃层强度存在3.7年的年际变化,在El Nino年为正的强度异常,其可能主要受局地气旋式大气环流变异所影响。谱分析同时表明,该海域夏季温跃层强度还存在33.2年的年代际变化,上世纪70年代中期,温跃层强度由弱转强,而此变化可能与黑潮流量的年代际变化有关。 海洋水温垂直结构的统计预报结果显示,EOF分解的前四个主分量即能够解释原空间点温度距平总方差的95%以上,以海洋表层附近观测资料求解的特征系数推断温度垂直结构分布的结果最稳定。利用东海陆架区、南海深水区和台湾周边海域三个不同区域的实测CTD样本廓线资料,对重构模型的检验结果表明,重构与实测廓线的相关程度超过95%的置信水平。三个区重构与实测温度廓线值的平均误差分别为0.69℃,0.52℃,1.18℃,平均重构廓线误差小于平均气候偏差,统计模式可以很好的估算温度廓线垂直结构。东海陆架海区温度垂直重构廓线与CTD观测廓线获得的温跃层结果对比表明,重构温跃层上界、下界深度和强度的平均绝对误差分别为1.51m、1.36m和0.17℃/m,它们的平均相对误差分别为24.7%、8.9%和22.6%,虽然温跃层深度和强度的平均相对误差较大,但其绝对误差量值较小。而在南海海区,模型重构温跃层上界、下界和强度的平均绝对预报误差分别为4.1m、27.7m和0.007℃/m,它们的平均相对误差分别为16.1%、16.8%和9.5%,重构温跃层各特征值的平均相对误差都在20%以内。虽然南海区温跃层下界深度平均绝对预报误差较大,但相对于温跃层下界深度的空间尺度变化而言(平均温跃层下界深度为168m),平均相对误差仅为16.8%。因此说模型重构的温度廓线可以达到对我国陆架海域、深水区温跃层的较好估算。 基于对历史水文温度廓线观测资料的分析及自主温跃层统计预报模型,研制了实时可利用微机简单、快捷地进行温跃层估算及查询的可视化系统,这是迄今进行大范围海域温跃层统计与实时预报研究的较系统成果。
Resumo:
Reproduction and chromosome inheritance in triploid Pacific oyster (Crassostrea gigas Thunberg) were studied in diploid female x triploid male (DT) and reciprocal (TD) crosses. Relative fecundity of triploid females was 13.4% of normal diploids. Cumulative survival from fertilized eggs to spat stage was 0.007% for DT crosses and 0.314% for TD crosses. Chromosome number analysis was conducted on surviving progeny from DT and TD crosses at 1 and 4 years of age. At Year 1, oysters from DT crosses consisted of 15% diploids (2n = 20) and 85% aneuploids. In contrast, oysters from TD crosses consisted of 57.2% diploids, 30.9% triploids (3n = 30) and only 11.9% aneuploids, suggesting that triploid females produced more euploid gametes and viable progeny than triploid males. Viable aneuploid chromosome numbers included 2n + 1, 2n + 2, 2n + 3, 3n - 2 and 3n - 1. There was little change over time in the overall frequency of diploids, triploids and aneuploids. Among aneuploids, oysters with 2n + 3 and 3n-2 chromosomes were observed at Year 1, but absent at Year 4. Triploid progeny were significantly larger than diploids by 79% in whole body weight and 98% in meat weight at 4 years of age. Aneuploids were significantly smaller than normal diploids. This study suggests that triploid Pacific oyster is not completely sterile and cannot offer complete containment of cultured populations.
Resumo:
The distribution of dissolved organic nitrogen (DON) and nitrate were determined seasonally (winter, spring and summer) during three years along line P, i.e. an E-W transect from the coast of British Columbia, Canada, to Station P (50degreesN, 145degreesW) in the subarctic North East Pacific Ocean. In conjunction, DON measurements were made in the Straits of Juan de Fuca and Georgia within an estuarine system connected to the NE Pacific Ocean. The distribution of DON at the surface showed higher values of 4-17 muM in the Straits relative to values of 4-10 muM encountered along line P, respectively. Along line P, the concentration of DON showed an inshore-offshore gradient at the surface with higher values near the coast. The equation for the conservation of DON showed that horizontal transport of DON (inshore-offshore) was much larger than vertical physical mixing. Horizontal advection of DON-rich waters from the coastal estuarine system to the NE Pacific Ocean was likely the cause of the inshore-offshore gradient in the concentration of DON. Although the concentration of DON was very variable in space and time, it increased from winter to summer, with an average build up of 4.3 muM in the Straits and 0.7 muM in the NE subarctic Pacific. This implied seasonal DON sources of 0.3 mmol N m(-2) d(-1) at Station P and 1.5 mmol N m(-2) d(-1) in the Straits, respectively. These seasonal DON accumulation rates corresponded to about 15-20% of the seasonal nitrate uptake and suggested that there was a small seasonal build up of labile DON at the surface. However, the long residence times of 180-1560 d indicated that the most of the DON pool in surface waters was refractory in two very different productivity regimes of the NE Pacific. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Rates of respiration and excretion of the Pacific oyster, Crassostrea gigas, were measured seasonally from June 2002 to July 2003 under ambient conditions of food, water temperature, pH, and salinity in Sanggou Bay, an important mariculture coast in north China. The aim of this study is to obtain fundamental data for further establishing an energy budget model and assessing the carrying capacity for cultivation of C. gigas in north China. Oysters were collected monthly or bimonthly from the integrated culture areas of bivalve and kelp in the bay. Oxygen consumption and ammonium and phosphorus excretion rates were measured, and ratios of O/N and NIP were calculated. One-way ANOVA was applied to determine differences among these parameters that act as a function of seasonal variation. All the physiological parameters yielded highly significant variations with season (P<0.01) The rate of respiration varied seasonally, with the highest oxygen consumption rate in July and the lowest rate in January, ranging from 0.07 to 2.13 mg O-2 h(-1) g(-1) dry tissue weight (DW). Maximum and minimum ammonium excretion rates were recorded in August and January, respectively, ranging from 0.51 to 5.40 mu mol NH4-N h(-1) g(-1) DW. Rates of phosphorus excretion varied from 0.11 (in January) to 0.64 (in July) mu mol PO4-P h(-1) g(-1) DW. The O/N and N/P ratios changed from 9.2 (in January) to 59.8 (in July) and from 4.6 (in January) to 10.9 (in August), respectively. For each season, the allometric relationship between the physiological response (e.g., rate of oxygen consumption, ammonium and phosphorus excretion) and DW of the animal was estimated using the formula: Y=a x DWb. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
A new species, Axianassa sinica, from the Beibu Gulf (Gulf of Tonkin), northern South China Sea, is described and illustrated. The new species is readily distinguished from A. australis Rodrigues & Shimizu, 1992, by its acute rostrum, merus of pereopod 1 with a tooth distally on lower margin and an elongated telson.
Resumo:
Based on the material deposited in the Museum national d'Histoire naturelle, Paris, collected from the Indo-West Pacific, principally from the New Caledonian region, the present paper reports 117 palaemonoid shrimp species, which belong, respectively, to Anchistioididae ( one genus, one species), Gnathophyllidae ( one genus, one species), Palaemonidae Palaemoninae ( seven genera, nine species), and Palaemonidae Pontoniinae ( 30 genera, 106 species), including eight new species. The new species are all Pontoniinae: Mesopontonia brevicarpalis sp. nov., Palaemonella komaii sp. nov., Periclimenes crosnieri sp. nov., Periclimenes forgesi sp. nov., Periclimenes loyautensis sp. nov., Periclimenes paralcocki sp. nov., Periclimenes paraleator sp. nov., and Periclimenes pseudalcocki sp. nov. The last six new species are members of the deep-water "Periclimenes alcocki species complex'', which has more than two ( usually four) pairs of dorsolateral telson spines anterior to the posterior telson margin, the cornea is usually reduced, the dactyl of the major second chela is generally flanged and the chela is sometimes covered with small tubercles. The complex is usually found at more than 200m depth in the West Pacific. The species can be distinguished from each other by the armature of ambulatory propod and dactyl, diameter of cornea, rostrum shape and the number of pairs of dorsolateral telson spines. Mesopontonia brevicarpalis sp. nov., from the southeast coast of Africa, is the seventh species of the genus. Palaemonella komaii sp. nov. is very similar to Palaemonella dolichodactylus Bruce, 1991 and Palaemonella hachijo Okuno, 1999. These three species share the features of very long and slender ambulatory pereiopods with the dactyl more than eight times longer than its basal depth and with several long setae on the dorsal dactylar margin.