95 resultados para optical parametric-amplifier


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A monolithically integrated optoelectronic receiver was realized utilizing a deep sub-micron MS/RF CMOS process. Novel photo-diode with STI and highspeed receiver circuit were designed. This OEIC takes advantage of several new features to improve the performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the design of a wide-band low-noise amplifier (LNA) implemented in a 0.35 mu m SiGe BiCMOS technology for cable (DVB-C) and terrestrial (DVB-T) tuner applications. The LNA utilizes current injection to achieve high linearity. Without using inductors, the LNA achieves 0.1-1GHz wide bandwidth and 18.8-dB gain with less than 1.4-dB gain variation. The noise figure(NF) of the wideband LNA is 5dB, its 1-dB compression point is -2dBm and IIP3 is 8dBm. The LNA dissipates 120mW power with a 5-V supply.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This letter presents the effective design of a tunable 80 Gbit/s wavelength converter with a simple configuration consisting of a single semiconductor optical amplifier (SOA) and an optical bandpass filter (OBPF). Based on both cross-gain and cross-phase modulation in SOA, the polarity-preserved, ultrafast wavelength conversion is achieved by appropriately filtering the blue-chirped spectral component of a probe light. Moreover, the experiments are carried out to investigate into the wavelength tunability and the maximum tuning range of the designed wavelength converter. Our results show that a wide wavelength conversion range of nearly 35 nm is achieved with 21-nm downconversion and 14-nm upconversion, which is substantially limited by the operation wavelength ranges of a tunable OBPF and a tunable continuous-wave laser in our experiment. We also exploited the dynamics characteristics of the wavelength converter with variable input powers and different injection current of SOA. (C) 2008 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polarization-insensitive semiconductor optical amplifiers (SOA's) with tensile-strained multi-quantum-wells as actice regions are designed and fabricated. The 6x6 Luttinger-Kohn model and Bir-Pikus Hamiltonian are employed to calculate the valence subband structures of strained quantum wells, and then a Lorentzian line-shape function is combined to calculate the material gain spectra for TE and TM modes. The device structure for polarization insensitive SOA is designed based on the materialde gain spectra of TE and TM modes and the gain factors for multilayer slab waveguide. Based on the designed structure parameters, we grow the SOA wafer by MOCVD and get nearly magnitude of output power for TE and TM modes from the broad-area semiconductor lasers fabricated from the wafer.