110 resultados para oil and gas exploration
Resumo:
A promising application for biomass is liquid fuel synthesis, such as methanol or dimethyl ether (DME). Previous studies have studied syngas production from biomass-derived char, oil and gas. This study intends to explore the technology of syngas production from direct biomass gasification, which may be more economically viable. The ratio of H-2/CO is an important factor that affects the performance of this process. In this study, the characteristics of biomass gasification gas, such as H-2/CO and tar yield, as well as its potential for liquid fuel synthesis is explored. A fluidized bed gasifier and a downstream fixed bed are employed as the reactors. Two kinds of catalysts: dolomite and nickel based catalyst are applied, and they are used in the fluidized bed and fixed bed, respectively. The gasifying agent used is an air-steam mixture. The main variables studied are temperature and weight hourly space velocity in the fixed bed reactor. Over the ranges of operating conditions examined, the maximum H-2 content reaches 52.47 vol%, while the ratio of H-2/CO varies between 1.87 and 4.45. The results indicate that an appropriate temperature (750 degrees C for the current study) and more catalyst are favorable for getting a higher H-2/CO ratio. Using a simple first order kinetic model for the overall tar removal reaction, the apparent activation energies and pre-exponential factors are obtained for nickel based catalysts. The results indicate that biomass gasification gas has great potential for liquid fuel synthesis after further processing.
Resumo:
Four models are employed in the landscape change detection of the newly created wetland. The models include ones for patch connectivity. ecological diversity, human impact intensity and mean center of land cover. The landscape data of the newly created wetland in Yellow River Delta in 1984, 1991, and 1996 are produced from the unsupervised classification and the supervised classification on the basis of integrating Landsat TM images of the newly created wetland in the four seasons of the each year. The result from operating the models into the data shows that the newly created wetland landscape in Yellow River Delta had a great chance. The driving focus of the change are mainly from natural evolution of the newly created wetland and rapid population growth, especially non-peasant population growth in Yellow River Delta because a considerable amount of oil and gas fields have been found in the Yellow River Delta. For preventing the newly created wetland from more destruction and conserving benign Succession of the ecosystems in the newly created wetland, six measures are suggested on the basis of research results. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
On the basis of analyzing the principle and realization of geo-steering drilling system, the key technologies and methods in it are systematically studied in this paper. In order to recognize lithology, distinguish stratum and track reservoirs, the techniques of MWD and data process about natural gamma, resistivity, inductive density and porosity are researched. The methods for pre-processing and standardizing MWD data and for converting geological data in directional and horizontal drilling are discussed, consequently the methods of data conversion between MD and TVD and those of formation description and adjacent well contrast are proposed. Researching the method of identifying sub-layer yields the techniques of single well explanation, multi-well evaluation and oil reservoir description. Using the extremum and variance clustering analysis realizes logging phase analysis and stratum subdivision and explanation, which provides a theoretical method and lays a technical basis for tracing oil reservoirs and achieving geo-steering drilling. Researching the technique for exploring the reservoir top with a holdup section provides a planning method of wellpath control scheme to trace oil and gas reservoir dynamically, which solves the problem of how to control well trajectory on condition that the layer’s TVD is uncertain. The control scheme and planning method of well path for meeting the demands of target hitting, soft landing and continuous steering respectively provide the technological guarantee to land safely and drill successfully for horizontal, extended-reach and multi-target wells. The integrative design and control technologies are researched based on geology, reservoir and drilling considering reservoir disclosing ratio as a primary index, and the methods for planning and control optimum wellpath under multi-target restriction, thus which lets the target wellpath lie the favorite position in oil reservoir during the process of geo-steering drilling. The BHA (bottomhole assembly) mechanical model is discussed using the finite element method, and the BHA design methods are given on the basis of mechanical analyses according to the shape of well trajectory and the characteristics of BHA’s structure and deformation. The methods for predicting the deflection rate of bent housing motors and designing their assemblies are proposed based on the principle of minimum potential energy, which can clearly show the relation between the BHA’s structure parameters and deflection rate, especially the key factors’ effect to the deflection rate. Moreover, the interaction model between bit and formation is discussed through the process of equivalent formation and equivalent bit considering the formation anisotropy and bit anisotropy on the basis of analyzing the influence factors of well trajectory. Accordingly, the inherence relationship among well trajectory, formation, bit and drilling direction is revealed, which lays the theory basis and technique for predicting and controlling well trajectory.
Resumo:
In this paper, taking Madong district of Huanghua depression as a case, based on the theory of sequence stratigraphy, sedimentology, reservoir geology and geophysics, according to core analysis, seismic attribute analysis, logging constrained inversion, multi-data correlation of strata, reservoir modeling, etc. the lower and middle first member of Shahejie formation of the study area was forecasted and evaluated. As a result, a number of reservoir prediction and remaining oil distribution methods suitable to oil exploitation of gravity flow channel reservoir are presented. Scientific foundation is provided to the next adjustment of development program and exploitation of the remaining oil. According to high resolution sequence stratigraphy theory, precise stratigraphic framework was founded, the facies types and facies distribution were studied under the control of stratigraphic framework, the technologies of seismic attribute abstraction and logging constrained inversion. Result shows that gravity flow channel, as the main facies, developed in the rising period of base-level cycle, and it was formed during the phase of contemporaneous fault growth. As the channel extends, channel width was gradually widened but thickness thined. The single channels were in possession of a great variety of integrated modes, such as isolated, branching off, merging and paralleling, forming a kind of sand-mud interblending complex sedimentary units. Reservoir quality differs greatly in vertical and horizontal direction, and sedimentary microfacies is main controlling factor of the reservoir quality. In major channel, deposition thickness is great, and petrophysical property is well. While in marginal channel, reservoir is thinner, and petrophysical property is unfavorable. Structure and reservoir quality are main factors which control the oil and gas distribution in the study area. On the basis of the research about the reservoir quality, internal, planar and 3-D reservoir heterogeneities are characterized, and the reservoir quality was sorted rationally. At last, based on the research of reservoir numerical simulation of key well group, combined with reservoir performance analysis and geological analysis above, remaining oil distribution patterns controlled by internal rhythm of gravity flow channel were set up. Through this research, a facies-restrained reservoir prediction method integrating multi-information was presented, and potential orientation of remaining oil distribution in gravity flow channel reservoir is clarified.
Resumo:
The Qinghai-Tibet Plateau lies in the place of the continent-continent collision between Indian and Eurasian plates. Because of their interaction the shallow and deep structures are very complicated. The force system forming the tectonic patterns and driving tectonic movements is effected together by the deep part of the lithosphere and the asthenosphere. It is important to study the 3-D velocity structures, the spheres and layers structures, material properties and states of the lithosphere and the asthenosphere for getting knowledge of their formation and evolution, dynamic process, layers coupling and exchange of material and energy. Based on the Rayleigh wave dispersion theory, we study the 3-D velocity structures, the depths of interfaces and thicknesses of different layers, including the crust, the lithosphere and the asthenosphere, the lithosphere-asthenosphere system in the Qinghai-Tibet Plateau and its adjacent areas. The following tasks include: (1)The digital seismic records of 221 seismic events have been collected, whose magnitudes are larger than 5.0 over the Qinghai-Tibet Plateau and its adjacent areas. These records come from 31 digital seismic stations of GSN , CDSN、NCDSN and part of Indian stations. After making instrument response calibration and filtering, group velocities of fundamental mode of Rayleigh waves are measured using the frequency-time analysis (FTAN) to get the observed dispersions. Furthermore, we strike cluster average for those similar ray paths. Finally, 819 dispersion curves (8-150s) are ready for dispersion inversion. (2)From these dispersion curves, pure dispersion data in 2°×2° cells of the areas (18°N-42°N, 70°E-106°E) are calculated by using function expansion method, proposed by Yanovskaya. The average initial model has been constructed by taking account of global AK135 model along with geodetic, geological, geophysical, receiving function and wide-angle reflection data. Then, initial S-wave velocity structures of the crust and upper mantle in the research areas have been obtained by using linear inversion (SVD) method. (3)Taking the results of the linear inversion as the initial model, we simultaneously invert the S wave velocities and thicknesses by using non-linear inversion (improved Simulated Annealing algorithm). Moreover, during the temperature dropping the variable-scale models are used. Comparing with the linear results, the spheres and layers by the non-linear inversion can be recognized better from the velocity value and offset. (4)The Moho discontinuity and top interface of the asthenosphere are recognized from the velocity value and offset of the layers. The thicknesses of the crust, lithosphere and asthenosphere are gained. These thicknesses are helpful to studying the structural differentia between the Qinghai-Tibet Plateau and its adjacent areas and among geologic units of the plateau. The results of the inversion will provide deep geophysical evidences for studying deep dynamical mechanism and exploring metal mineral resource and oil and gas resources. The following conclusions are reached by the distributions of the S wave velocities and thicknesses of the crust, lithosphere and asthenosphere, combining with previous researches. (1)The crust is very thick in the Qinghai-Tibet Plateau, varying from 60 km to 80 km. The lithospheric thickness in the Qinghai-Tibet Plateau is thinner (130-160 km) than its adjacent areas. Its asthenosphere is relatively thicker, varies from 150 km to 230 km, and the thickest area lies in the western Qiangtang. India located in south of Main Boundary thrust has a thinner crust (32-38 km), a thicker lithosphere of about 190 km and a rather thin asthenosphere of only 60 km. Sichuan and Tarim basins have the crust thickness less than 50km. Their lithospheres are thicker than the Qinghai-Tibet Plateau, and their asthenospheres are thinner. (2)The S-wave velocity variation pattern in the lithosphere-asthenosphere system has band-belted distribution along east-westward. These variations correlate with geology structures sketched by sutures and major faults. These sutures include Main Boundary thrust (MBT), Yarlung-Zangbo River suture (YZS), Bangong Lake-Nujiang suture (BNS), Jinshajiang suture (JSJS), Kunlun edge suture (KL). In the velocity maps of the upper and middle crust, these sutures can be sketched. In velocity maps of 250-300 km depth, MBT, BNS and JSJS can be sketched. In maps of the crustal thickness, the lithospheric thickness and the asthenospheric thickness, these sutures can be still sketched. In particular, MBT can be obviously resolved in these velocity maps and thickness maps. (3)Since the collision between India and Eurasian plate, the “loss” of surface material arising from crustal shortening is caused not only by crustal thickening but also by lateral extrusion material. The source of lateral extrusion lies in the Qiangtang block. These materials extrude along the JSJS and BNS with both rotation and dispersion in Daguaiwan. Finally, it extends toward southeast direction. (4)There is the crust-mantle transition zone of no distinct velocity jump in the lithosphere beneath the Qiangtang Terrane. It has thinner lithosphere and developed thicker asthenosphere. It implies that the crust-mantle transition zone of partial melting is connected with the developed asthenosphere. The underplating of asthenosphere may thin the lithosphere. This buoyancy might be the main mechanism and deep dynamics of the uplift of the Qinghai-Tibet hinterland. At the same time, the transport of hot material with low velocity intrudes into the upper mantle and the lower crust along cracks and faults forming the crust-mantle transition zone.
Resumo:
Micro-pore-throat, micro-fracture and low permeability are the most obvious characters of Xifeng ultra-low permeability reservoir, and threshold pressure gradient and medium deformation during the period of oilfield developing results non-linear seepage feature of the formation liquid flowing in the porous medium underground. It is impossible to solve some problems in the ultra-low permeability reservoir development by current Darcy filtration theory and development techniques. In the view of the characters of ultra-low permeability and powerful-diagenesis and fracture up-growth, the paper quantitatively characterizes of through-going scope for reservoir parameters together with some materials such as similarity field outcrop, rock core, drilling, well logging and production dynamic, which provides geological base for further development adjustment. Based on the displacement experiment of different kinds of seepage fluid and oil-water two phases, this paper proves the relationship between threshold pressure gradient and formation permeability in experiment and theory, which is power function and its index is about -1. The variation rule and the mechanism of oil-water two phases threshold pressure gradient are studied. At the same time, based on the experiment of medium deformation, the variation rule of formation physical property parameters and the deformation mechanism are researched, and the influential factors on the medium deformation are analyzed systematically. With elastic unsteady filtration theory, nonlinear mathematical models of the steady and unsteady flow of single phase as well as horizontal well flow and oil-water two phases flow are deduced with the influence of nonlinear factors including threshold pressure gradient and media deformation. The influences of nonlinear factors upon well deliverability and reservoir pressure distribution as well as the saturation variation pattern of oil-water front are analyzed. By means of the researches such as reasonable well pattern, reasonable well array ration, artificial fracture length optimization advisable water flood timing and feasibility of advanced water flooding, it is necessary to find out effective techniques in order to improve development result of this kind of reservoir. This research result develops and improves on low-velocity nonlinear seepage theory, and offers ways to study similar kind of reservoir; it is meaningful to the development of the ultra-low permeability oil and gas reservoir.
Resumo:
Hydrocarbon migration and accumulation are the important process to form reservoirs in sedimentary basins, and their researches are usually very difficult to be done in petroleum geology. In this paper, the west segment of northern margin of the Qaidam Basin was selected as study area. The concept of fault open coefficient, that combines multi-factors dealing with fault sealing, was applied to estimate semi-quantitatively the sealing characteristics of six faults which were considered controlling the hydrocarbon migration and accumulation. The data from boreholes were investigated to appraise the permeable characteristics of lithology combinations upon and beneath the unconformity surface. The result suggests that the basal conglomerates consist frequently the carriers. The data from boreholes and outcrops were collected to describe the sand carrier system. In order to eliminate the influence of inverse activities of the basin that made the formations be very steep, author adopts the phase method to build the basin models: for the steps before Pliocene the recovered true thickness maps were used to build the basin block; for the steps after Pliocene, the structure maps of today were used to build the basin block. During the modeling process, the results were calibrated by various measured data . the modeled results includes the dynamic evolvement course of trap form phase, vitrinite reflectance mature, the source rock expelled hydrocarbon intensity and fluid potential and petroleum plays. Author integrates the source rock expelled hydrocarbon intensity, fluid potential and carrier system and apply the migration technology based on percolation theory to simulate the oil and gas migration and accumulation course in the main accumulation times. The dominant pathways of oil and gas may show clearly the prospect distribution. Based on the hydrocarbon migration characteristics, the main control factors were synthesized, that including the effective source rock distribution, the match relationship of structural trap forming and hydrocarbon expelling from source rocks, the unconformity of Mesozoic and Cenozoic, the structures and the faults movement at Quaternary Finally, the author figures out the prospect plays in the study area.
Resumo:
In this paper we base on the anisotropic theory and Zoeppritz function of the transmission theory and the law of amplitude versus offset simplify seismic reflection coefficient of different media, analyze the characteristic of the gas or oil saturated stratum or the VTI and HTI models. Discuss the P wave reflection relationship and the meanings of the different parameters. We use measured parameters of a reservoir to simulate the characteristic of the reservoir, study the different effects of stratum saturated with gas or oil and analyze the characteristic of the seismic response of different models which change with different incident angles and different azimuths. Using the field data of logs ,analyze the rock property parameters, build the relationship of logs and parameters by Gassmann theory or empirical function. Calculate the density and the shear modulus and bulk modulus, reconstruct the log curves, calculate shear wave logs and correlate the logs affected by mud and other environmental factors. Finally perform the relationship of the seismic data log of saturated stratum and enhance the ability and reliability in reservoir prediction. Our aim is by the prestack seismic processing to get high solution and amplitude preserved seismic data. Because in incident angle gathers or azimuthal gathers, the low signal to noise ratio and low different covers affect the result of the prestack reservoir prediction. We apply prestack noise erase, cell regularization process and relatively amplitude preservation in the high solution seismic process routine to preserve the characteristic of stratum response, and erase the effects of the noise. In this paper we finished prestack invertion in the BYT survey and fractured reservoir depiction in MB survey. By the invertion and multiple attributes crossplot. we can get the stratum profiles and oil indicator profiles which can predict the distribution of the reservoir and oil. In the MB survey, we get orientation and density of fractured reservoir by the azimuthal seismic amplitude and depict the potential oil and gas reservoir. Prestak invertion works better in distinguishing oil and reservoir.
Resumo:
Abstract: Hejiaji area lies on eastern part of Shanbei Slope in Ordos Basin and the primary oil-bearing bed is Chang 4+5 and Chang 6 of Yanchang Formation. It is indicated that the sedimentary facies and reservoir characteristics restricted the hydrocarbon accumulation regularity by the geological information. Therefore, Applied with outcrop observation,core description, geophysical logging interpretation, thin section determination, Scanning Electron Microscope, reservoir lithology and physical property analysis and other analytic machinery, the sedimentary facies ,micro-characteristic and master control factors on hydrocarbon reservoir of Yanchang Formation in Hejiaji area are studied deeply by means of sedimentology,reservoir geology and petroleum geology and provide a reliably reference for later prospect . Delta facies are identified in Hejiaji area and of which distributary channels in delta plain microfacies controlled the distribution of sand bodies and accumulation of oil and gas.The distribution of sand bodies distributed from northeast to southwest are dominated by sedimentary facies . It was shown that the sandstones are medium to granule arkose,which the mud matrix is r and including,calcite,the content of matrix is lower and that mostly are cements which are mainly quartz and feldspar overgrowths and chlorite films, in the second place are hydromica and ferrocalcite. All the sandstones have entered a period of late diagenetic stage in which the dominant diagenesis types in the area are compaction, cementation and dissolution. Remnant intergranular porosity and feldspar dissolved pore are main pore types which are megalospore and medium pore. Medium-fine throat, fine throat and micro-fine throat are the mainly throat type. Pore texture can be classified as megalospore and fine throat type, medium-pore and micro-fine throat type mainly, and they are main accumulate interspace in research region. The reservoir of Yanchang Formation in Hejiaji area is low- pore and low- permeability in the mass which have strong heterogeneity in bed, interbedded and plane. Studying the parameter of pore and permeability comprehensively and consulting prevenient study results of evaluation of reservoir, the reservoir is classifiedⅡ,Ⅲ and Ⅳ three types in which the Ⅱand Ⅲ can be divided into Ⅱa and Ⅱb, Ⅲa and Ⅲb respectively. Ⅱb and Ⅲa are the main reservoir type in Hejiaji area which are about 72.73%and 80%percent of whole reservoir and effective reservoir respectively.
Resumo:
The function of seismic data in prospecting and exploring oil and gas has exceeded ascertaining structural configuration early. In order to determine the advantageous target area more exactly, we need exactly image the subsurface media. So prestack migration imaging especially prestack depth migration has been used increasingly widely. Currently, seismic migration imaging methods are mainly based on primary energy and most of migration methods use one-way wave equation. Multiple will mask primary and sometimes will be regarded as primary and interferes with the imaging of primary, so multiple elimination is still a very important research subject. At present there are three different wavefield prediction and subtraction methods: wavefield extrapolation; feedback loop; and inverse-scattering series. I mainly do research on feedback loop method in this paper. Feedback loop method includs prediction and subtraction.Currently this method has some problems as follows. Firstly, feedback loop method requires the seismic data used to predict multiple is full wavefield data, but usually the original seismic data don’t meet this assumption, so seismic data must be regularized. Secondly, Multiple predicted through feedback loop method usually can’t match the real multiple in seismic data and they are different in amplitude, phase and arrrival time. So we need match the predicted multiple and that in seismic data through estimating filtering factors and subtract multiple from seismic data. It is the key for multiple elimination how to select a correct matching filtering method. There are many matching filtering methods and I put emphasis on Least-square adaptive matching filtering and L1-norm minimizing adaptive matching filtering methods. Least-square adaptive matching filtering method is computationally very fast, but it has two assumptions: the signal has minimum energy and is orthogonal to the noise. When seismic data don’t meet the two assumptions, this method can’t get good matching results and then can’t attenuate multiple correctly. L1-norm adaptive matching filtering methods can avoid these two assumptions and then get good matching results, but this method is computationally a little slow. The results of my research are as follows: 1. Proposed a method that interpolates seismic traces based on F-K migration and demigration. The main advantage of this method is that it can interpolate seismic traces in any offsets. It shows this method is valid through a simple model. 2. Comparing different Least-square adaptive matching filtering methods. The results show that equipose multi-channel adaptive matching filtering methods can get better results of multiple elimination than other matcing methods through three model data and two field data. 3. Proposed equipose multi-channel L1-norm adaptive matching filtering method. Because L1-norm is robust to large amplitude differences, there are no assumption on the signal has minimum energy and orthogonality, this method can get better results of multiple elimination. 4. Research on multiple elimination in inverse data space. The method is a new multiple elimination method and it is different from those methods mentioned above.The advantages of this method is that it is simple in theory and no need for the adaptive subtraction and computationally very fast. The disadvantage of this method is that it is not stabilized in its solution. The results show that equipose multi-channel and equipose pesudo-multi-channel least-square matching filtering and equipose multi-channel and equipose pesudo-multi-channel L1-norm matching filtering methods can get better results of multiple elimination than other matcing methods through three model data and many field data.
Resumo:
The Tarim Block is located between the Tianshan Mountains in the north and the Qinghai-Tibet Plateau in the south and is one of three major Precambrian cratonic blocks of China. Obviously, the Paleozoic paleogeographic position and tectonic evolution for the Tarim Block are very important not only for the study of the formation and evolution of the Altaids, but also for the investigation of the distributions of Paleozoic marine oil and gas in the Tarim Basin. According to the distributions of Paleozoic strata and suface outcrops in the Tarim Block, the Aksu-Keping-Bachu area in the northwestern part of the Tarim Block were selected for Ordovician paleomagnetic studies. A total of 432 drill-core samples form 44 sampling sites were collected and the samples comprise mainly limestones, argillaceous limestones and argillaceous sandstones Based on systematic study of rock magnetism and paleomagnetism, all the samples could be divided into two types: the predominant magnetic minerals of the first type are hematite and subordinate magnetite. For the specimens from this type, characteristic remanent magnetization (ChRM) could generally be isolated by demagnetization temperatures larger than 600℃; we assigned this ChRM as component A; whilst magnetite is the predominant magnetic mineral of the second type; progressive demagnetization yielded another ChRM (component B) with unblocking temperatures of 550-570℃. The component A obtained from the majority of Ordovician specimens has dual polarity and a negative fold test result; we interpreted it as a remagnetization component acquired during the Cenozoic period. The component B can only be isolated from some Middle-Late Ordovician specimens with unique normal polarity, and has a positive fold test result at 95% confidence. The corresponding paleomagnetic pole of this characteristic component is at 40.7°S, 183.3°E with dp/dm = 4.8°/6.9° and is in great difference with the available post-Late Paleozoic paleopoles for the Tarim Block, indicating that the characteristic component B could be primary magnetization acquired in the formation of the rocks. The new Ordovician paleomagnetic result shows that the Tarim Block was located in the low- to intermediate- latitude regions of the Southern Hemisphere during the Middle-Late Ordovician period, and is very likely to situate, together with the South China Block, in the western margin of the Australian-Antarctic continents of East Gondwana. However, it may have experienced a large northward drift and clockwise rotation after the Middle-Late Ordovician period, which resulted in the separation of the Tarim Block from the East Gondwanaland and subsequent crossing of the paleo-equator; by the Late Carboniferous period the Tarim Block may have accreted to the southern margin of the Altaids.
Resumo:
The petroleum migration, happening in the geologic past, is the very important and complex dynamic processes in the petroleum systems. It plays a linking role among all static factors in a system. The accumulation is in fact the result of the petroleum migration. For the petroleum geology, the dynamics research of the petroleum migration refers to the mechanism and process research, as well as the use of the quantitative methods. In this thesis, combining with the qualitative analysis and quantitative modeling, the author manages to discuss theoretically some key problems dealing with migration processes, which have not been solved yet, and to apply the studied results in petroleum system analysis in actual basins. The basin analysis offers the base of the numerical modeling for geological phenomena occurring in sedimentary basins, that consists of the sedimentary facies analysis, the section reconstructing technique, eroded thickness estimating, etc. The methods to construct the geologic model, which is needed in the research of oil and gas migration and accumulation, are discussed. The basin analysis offers also the possibility for the latter modeling works to get and select the parameters, such as stratum's thickness, age, stratigraphy etc. Modeling works were done by using two basin modeling softwares: Basin_Mod and TPC_Mod. The role of compaction during the secondary migration and the heterogeneity of migrating paths within the clastic carrier are modeled. And the conclusions were applied in the migration studies in the Jungaer Basin, lying on the Northwest part of the China. To construct a reliable migration model, the author studied the characteristics of the sedimentation, the pore fluid pressure evolution, as well as the distribution and the evolution of fluid potential, following the tectonic evolution of the Jungaer Basin. The geochemical prospecting results were used to evidence and to calibrate the migration processes: the oil-source correlation, the distribution of the properties of oil, gas and water. Finally, two important petroleum systems, Permian one and Jurassic one were studied and identified, according, principally, to the studies on the petroleum migration within the Jungaer Basin. Since the oil, as well as the gas, moves mainly in separate phase during the secondary migration, their migrating behaviors would be determined by the dynamics conditions of migration, including the driving forces and pathways. Based on such a consideration, the further understandings may be acquired: the roles played by permeable carriers and low-permeable source rock would be very different in compaction, overpressure generation, petroleum migration, and so on. With the numerical method, the effect of the compaction on the secondary migration was analyzed and the results show that the pressure gradient and the flux resulted from compaction are so small that could be neglected by comparing to the buoyancy of oil. The main secondary migration driving forces are therefore buoyancy and capillary within a hydrostatic system. Modeling with the commercial software-Basin_Mod, the migration pathways of petroleum in clastic carriers seem to be inhomogeneous, controlled by heterogeneity of the driving force, which in turn resulted from the topography of seals, the fabrics and the capillary pressure of the clastic carriers. Furthermore, the direct and indirect methods to study fault-sealing properties in the course of migration were systemically summarized. They may be characterized directly by lithological juxtaposition, clay smear and diagenesis, and indirectly the comparing the pressures and fluid properties in the walls at two apartments of a fault. In Jungaer Basin, the abnormal pressures are found in the formations beneath Badaowan or Baijantan Formation. The occurrence of the overpressure seems controlled by the stratigraphy. The rapid sedimentation, tectonic pressuring, clay sealing, chemical diagensis were considered as the principal pressuring mechanisms. The evolution of fluid pressure is influenced differently at different parts of the basin by the tectonic stresses. So the basin appears different pressure evolution cycles from each part to another during the geological history. By coupling the results of thermal evolution, pressure evolution and organic matter maturation, the area and the period of primary migration were acquired and used to determine the secondary migration time and range. The primary migration in Fengcheng Formation happened from latter Triassic to early Jurassic in the main depressions. The main period of lower-Wuerhe Formation was at latter Jurassic in Changji, Shawan and Pen-1-jing-xi Depression, and at the end of early Cretaceous in Mahu Depression. The primary migration in Badaowan and Sangonghe Formation is at the end of early-Cretaceous in Changji Depression. After then, the fluid potential of oil is calculated at the key time determined from area and time of the primary migration. Generally, fluid potential of oil is high in the depressions and low at the uplifts. Synthetically, it is recognized that the petroleum migration in the Jungaer Basin is very complex, that leads us to classify the evolution of petroleum systems in Northwestern China as a primary stage and a reformed one. The remigration of accumulated petroleum, caused by the reformation of the basin, results in the generation of multiple petroleum systems. The faults and unconformities are usually the linkers among the original petroleum systems. The Permian petroleum system in Jungaer Basin is such a multiple petroleum system. However, the Jurassic petroleum system stays still in its primary stage, thought the strong influences of the new tectonic activities.
Resumo:
Godao area, located in the east of the Zhanhua depression of Jirang sag in Bohai Bay Basin, is the studying area in my dissertation. It is first time that fault sealing properties and the related relationship with the pool forming are studied in Gudao area. On the base of the analysis of the regional tectonics, the author has studied the tertiary structural evolution of the Gudao area and distinguished the fault's level and put forward the distinguishing principle. The geometrical feature, mechanical characters, developmental mechanism and history of the boundary faults in the tectonic unit of this area are all studied and emphasized especially. The buried history of oil-generating depression (that is Gudao depression) and the history of oil and gas migration simultaneously are discussed, the juxtaposition relationship between boundary fault evolutionary history and oil and gas migrated history are expatiated. To the geological condition of the Gudao area, three level faults sealing properties of this area were discussed in detail. Their characteristics of behavior and the intrinsic relationship between their sealing and oil and gas migrated reservoir are elucidated. The pool-forming models related to fault seal are exposed. The author has studied the lithologies of different order of faults, the relationship of occurrence assemblage analysis, normal stress of fault plane in different depth and shale smear factor faults. Then analysis their role in the various faults sealing and confirms fault sealing marks of three different orders faults and exposes the mechanism of fault sealing. Shale smear zone formed by first order fault in lasting activities is one different type of fault breccia and mainly controlled factor to its entrapment of petroleum. Effective sealing threshold value and fault displacement is ascertained. Mainly controlled factor of second fault sealing is bigger compressive stress loaded on fault plane. According to this, quantitatively evaluated index is given. Shale smear zone is necessary condition for second fault stress entrapment. The juxtaposed relationship between the different lithologies within third order faults is most important controlled factor for its sealing. Based on various order of fault sealing features and mechanism in Gudao area, the author proposed three orders of fault sealing models. Shale smear zone sealing model, normal stress sealing model and lithologies juxtaposed sealing model are suggested to first, second and third order fault respectively. The conclusion of this studying has not only the very important theoretical significance and practical value in Gudo area but also the very important guiding role for other areas of related aspects.
Resumo:
The present maturity of Cambrian and Ordovician source rocks in Tazhong area, Tarim basin, is studied using several organic petrology methods and conodont CAI method. The highest palaeotemperature that the Cambrian-Ordovician undergone is revealed by Laser Roman Microprobe (LRM) analysis and by simulating experiment of the kerogen chemical kinetics. In according to all above study, the thermal history of Cambrian and Ordovician is reconstructed based on numerical simulating approaches. The characteristics of secondary hydrocarbon generating are studied by inclusions analysis. The reflectances of the samples in the drills located in Tazhong area show that the maturities of Cambrian source rocks are in the stages of condense oil-dry gas, and that of Ordovician source rocks range from peak of oil generating to wet gas stage. The palaeotemperature data of Cambrian-Orovician source rocks from well Tacan 1, based on LRM analysis, are in coincidence with that from other methods. Also are the palaeotemperature data of Cambrian-Orovician source rocks in well Tacan 1 based on the simulating experiments of kerogen pyrolysis, similar to the homogenization temperatures of inclusions in the source rocks. Aaccording to the vitrinite inflectance data of the TZ12 well and Tacan 1 well, the paleotemperature gradients are analysized and reconstructed. These data show that the paleotemperature gradient in Tazhong area was the highest during Cambrian-Ordovician period, it was up to 3.5°C/100m. Following, the temperature gradient descended gradually and it reached to the lowest at present (2.2°C/100m). The histories of maturation and hydrocarbon generation of Cambrian and Ordovician source rocks in Tazhong area are researched systematically and quantitatively, the results show that periods of oil generation from Cambrian and Ordovician source rocks lasted for a long time from Ordovician to Carbonferious periods because the central Cambrian stratum in the north slope of Tazhong area is buried differently in depth. The top of the Cambrian entered into the peak of oil generation in middle-late Ordovician, and most area of the north slope of Tazhong area entered into the peak of oil generation in Carbonferious period, and on the uplift belt some of source rocks entered into the peak of oil generation in Permian period. In early Devonian, the central of the Lower Ordovician source rocks near the Manjiaer depression reached the peak of oil generation and near the top of the Tazhong uplift did not reached the peak of oil generation until early Cretaceous. The middle-upper Ordovician entered into the peak of oil generation in early-middle Jurassic. The time of the middle-upper Ordovician in the top of the uplift belt entering into the peak of oil generation was delayed, because the source rock was buried shallowly, and it did not reached the peak of oil generation until middle Cretaceous. Middle-upper Ordovician in the top of the north slope has been in the peak of oil generation now, it is consistent with the maturity (1.0-1.2%Ro) of the source rocks. The characteristics of the inclusions formed by kerogens are different from that by crystal-enclosed organic matters(OM) during secondary hydrocarbon generation of Cambrian and Ordovician source rocks. The secondary hydrocarbon generation mainly occurred in Mesozoic-Cenozoic period, in an area of about 9000km2 in the north slope. The intensity of the secondary hydrocarbon generation of Cambrian and Ordovician is up to 21kg/torg and 36kg/torg) respectively. Using the staged gas chromatography, the high-over maturated carbonate source rocks are analysized to release the adsorbed OM, inclusions OM and crystal-enclosed OM, respectively, and to evaluate their relative contributions to secondary hydrocarbon generation. The three periods of oil and gas migration and petroleum pools formation in Tazhong area are determined according to organic inclusions and solid bitumen.