148 resultados para nitrogen sources


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports on seasonal changes in stable carbon and nitrogen isotope ratios of seston and muscle tissue of silver carp and bighead carp during 2004 and 2005, focusing primarily on the carbon sources and trophic relationships among phytoplankton, zooplankton and silver carp and bighead carp in a large fish pen of Meiliang Bay (Lake Taihu, China). delta C-13 showed a minimal value in March 2005 and a maximal value in August 2005 in seston both inside and outside the pen, whereas delta N-15 of seston showed the minimum in winter and the maximum during algal blooms. A positive correlation between delta C-13 of silver carp and that of seston suggested that temporal variation Of delta C-13 in seston was preserved in fish via the food chain. The differences of delta C-13 among seston, zooplankton and muscle tissue of silver carp and bighead carp ranged only 0.2-1.7%, indicating that plankton production was the primary food source of filter-feeding fishes. According to a mass balance model, we estimated that the contributions of zooplankton to the diets of silver carp and bighead carp were 45.7% and 54.3%, respectively, based on the delta N-15 values of zooplankton and planktivorous fishes. (C) 2007 Elsevier B.V. All rights reserved

Relevância:

20.00% 20.00%

Publicador:

Resumo:

w Traditionally, nitrogen control is generally considered an important component of reducing lake eutrophication and cyanobacteria blooms. However, this viewpoint is refuted recently by researchers in China and North America. In the present paper, the traditional viewpoint of nitrogen control is pointed out to lack a scientific basis: the N/P hypothesis is just a subjective assumption; bottle bioassay experiments fail to simulate the natural process of nitrogen fixation. Our multi-year comparative research in more than 40 Yangtze lakes indicates that phosphorus is the key factor determining phytoplankton growth regardless of nitrogen concentrations and that total phytoplankton biomass is determined by total phosphorus and not by total nitrogen concentrations. These results imply that, in the field, nitrogen control will not decrease phytoplankton biomass. This finding is supported by a long-term whole-lake experiment from North America. These outcomes can be generalized in terms that a reduction in nitrogen loading may not decrease the biomass of total phytoplankton as it can stimulate blooms of nitrogen-fixing cyanobacteria. To mitigate eutrophication, it is not nitrogen but phosphorus that should be reduced, unless nitrogen concentrations are too high to induce direct toxic impacts on human beings or other organisms. Finally, details are provided on how to reduce controls on nitrogen and how to mitigate eutrophication. (C) 2009 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in China Press. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Gonghu Bay of Lake Taihu, tissue of five mussel species showed delta C-13 values similar to or slightly below that of pelagic suspended particulate organic matter (SPOM). This indicated that mussels in this area either fed non-selectively and so reflected available carbon in the pelagic habitat or selected for phytoplankton. The situation was the same for Anodonta woodiana woodiana and Cristaria plicata in Meiliang Bay; however, for the remaining three species, Hyriopsis cumingii, Arconaia lanceolata, and Lamprotula rochechouarti, tissue had intermediate delta C-13 values, falling between those for pelagic SPOM and benthic sediment organic matter (SOM), suggesting a possible preferential selection of phytoplankton from the pelagic SPOM but more likely reflecting local differences in pelagic SPOM and benthic SOM composition and available organic carbon sources. The mixing model showed that pelagic SPOM accounted for over 98% of carbon incorporated by all mussels in Gonghu Bay and two mussels in Meiliang Bay, suggesting the dietary importance of pelagic food sources for mussels. Less than 50% of the assimilation in H. cumingii, A. lanceolata, and L. rochechouarti came from the pelagic carbon sources in Meiliang Bay, which suggested that these species consumed a mix of benthic and pelagic derived carbon sources.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 115 days feeding trial was conducted to evaluate the effect of dietary cyanobacteria on growth, microcystins (MCs) accumulation in hybrid tilapia (Oreochromis niloticus x O. aureus) and the recovery when the fish were free of cyanobacteria. Three experimental diets were formulated: the control (cyanobacteria free diet); one test diet with cyanobacteria from Lake Taihu (AMt 80.0 mu g MCs g(-1) diet) and one with cyanobacteria from Lake Dianchi (AMd, 410.0 rho g MCs g(-1) diet). Each diet was fed to fish for 60 days and then all fish were free of cyanobacteria for another 55 days. A significant increase in feeding rate (FR) was observed in fish fed AMd diet after a first 30-day exposure (1(st) EP), and in fish fed both AMt diet and AMd diet after a second 30-day exposure (2(nd) EP). Specific growth rates (SGR) of fish fed AMt diet and AMd diet were both obviously affected after the first 30-day exposure, but SGR was only significantly affected in fish fed AMt diet after the second 30-day exposure. After a 55-day recovery, there were no significant differences among diets in the indices mentioned above. Much higher concentrations of MCs were accumulated in tissues of all fish exposed to cyanobacteria. After the 55-day recovery, MC concentrations in fish tissues were significantly lower than those on day 60. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extracellular phosphatases are an important part of the phosphorus cycle in aquatic environments. Phosphatase activity (PA) in plankton was studied in seven subtropical shallow lakes of different exploitation management and trophic status in the urban area of Wuhan City. Bulk PA was rather high (range 1.1-11 mu mol l(-1) h(-1)), although concentrations of soluble reactive phosphorus (SRP) were also high (range 27 mu g P l(-1) to similar to 1.5 mg P l(-1)) in all lakes. Cell-associated extracellular PA in phytoplankton was detected using the fluorescence-labelled enzyme activity technique. Phytoplankton species partly contributed to the bulk PA. We found explicit differences in the presence of cell-associated phosphatase within the main phytoplankton groups; species belonging to Chlorophyta and Dinophyta were regularly phosphatase-positive, while Cyanophyta and Bacillariophyceae were phosphatase-negative in all but one case. Furthermore, there is a certain potential of extracellular phosphatases produced by heterotrophic nanoflagellates in most of the lakes. This new finding compromises the 'traditional' interpretation of bulk phosphatase data as being due to overall phytoplankton or bacterial P regeneration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitrogen and phosphorus dynamics in relation to fallowing in a fish cage farm was investigated in a shallow lake in China. Four sampling sites were set: beneath the cages, at the cage sides, and 50 and 100 m east of the cage farm. Total nitrogen (TN) and total phosphorus (TP) in lake water and sediment were analyzed during a 2-year rearing cycle. The cage culture had a fish yield of 16.3-39.2 tonnes in the study period. Based on the mass balance equation, 1533-3084 kg TN and 339-697 kg TP were contributed to the lake environment. Nitrogen and phosphorous concentrations showed greater increase in the first culture period than in the second rearing cycle. No obvious changes were found at the sampling sites 50 and 100 m east of the cages during the study periods. Main impacts were found close to the cages (beneath the cages and at the cage side); the sampling points at the cage side showed relatively high TN and TP sedimentation. After 3 months of fallowing, water TN and TP decreased significantly but the sediment TN and TP contents remained high. Therefore, recovery seems to happen during fallowing but attention should be paid to whether the culture continues to operate in the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Submersed macrophytes in eutrophic lakes often experience high NH4+ concentration and low light availability in the water column. This study found that an NH4+-N concentration of 1 mgL(-1) in the water column apparently caused physiological stress on the macrophyte Potamogeton crispus; L The plants accumulated free amino acids (FAA) and lost soluble carbohydrates (SC) under NH4+ stress. These stressful effects of NH4+ were exacerbated under low light availability. Shading significantly increased NH4+ and FAA contents and dramatically decreased SC and starch contents in the plant shoots. At an NH4+-N concentration of 1 mg L-1 in the water column, neither growth inhibition nor NH4+ accumulation was observed in the plant tissues of P. crispus under normal light availability. The results showed that 1 mg L-1 NH4+-N in the water column was not toxic to P. crispus in a short term. To avoid NH4+ toxicity. active NH4+ transportation out of the cell may cost energy and thus result in a decline of carbohydrate. When NH4+ inescapably accumulates in the plant cell, i.e. under NH4+ Stress and shading, NH4+ is scavenged by FAA synthesis. (c) 2009 Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Temporal and spatial dynamics of nitrogen in lake and interstitial water were studied monthly in a large shallow, eutrophic lake in subtropical China from October 2002 to September 2003. The distribution of nitrogen was consistent with the idea that high nitrogen concentrations in the western part of the lake resulted from high levels of the nutrients from the surrounding cities through sewage-drainage systems. Nitrate was the predominant form of nitrogen in the overlying water, while ammonium was predominant in the interstitial water, indicating that strong oxidative nutrient regeneration occurred near the sediment-water interface. Nitrate could be an important dissolved inorganic matter source for phytoplankton, which in turn influenced the seasonal variations of nitrate concentrations in lake water. Significant positive correlation between ammonium fluxes and water temperature was observed and could probably be attributed to the intensified ammonification and nitrate reduction with increased temperature. Positive correlation between ammonium fluxes and algae biomass and Chl a concentrations may indicate that phytoplankton was an important factor driving ammonium fluxes in our study lake, and vice versa that higher fluxes of ammonium supported a higher biomass of the phytoplankton.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Growth, nitrogen and carbohydrate metabolism in relation to eutrophication were studied for a submerged plant Potamogeton maackianus, a species common in East Asian shallow lakes. The plants were grown in six NH4+-N concentrations (0.05, 0.50, 1.00, 3.50, 5.00 and 10.00 mg/L) for six days. NH4+-N levels in excess of 0.50 mg/L inhibited the plant growth. The relationships between external NH4+-N availability and total nitrogen (TN), protein-N, free amino acid-N (FAA-N) and NH4+-N in plant tissues, respectively, conformed to a logarithmic model suggesting that a feedback inhibition mechanism may exist for ammonium uptake. The response of starch to NH4+-N was fitted with a negative, logarithmic curve. Detailed analysis revealed that the influx NH4+-N had been efficiently incorporated into organic-N and eventually stored as protein at the expense of starch accumulation. These data suggest that this species may be able to tolerate high levels of ammonium when dissolved oxygen is sufficient.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A comparative study was conducted to reveal the differentiate effects of eight different filter media including gravel, zeolites, anthracite, shale, vermiculite, ceramic filter media, blast furnace steel slag and round ceramsite. The study mainly related to the eight different filter media's removal performances of organic matter, nitrogen and phosphorus in the vertical flow constructed wetland simulated system, which treating wastewater at hydraulic loading rate of 1000-2500 mm/d. The results indicated that the removal effects were closely related to the physical and chemical properties of medium materials. Anthracite-filled system had the highest removal rate for the total organic carbon (TOC), up to 70%, and the removal rates of other systems ranged from 20% to 30%. As for the five-day biochemical oxygen demand (BOD5), anthracite-filled and steel slag-filled systems had the highest removal rates, also up to 70%, as well as other systems all exceeded 50%. At the same time, for the total nitrogen (TN) and NH4(+)-N, the zeolites-filled and ceramic-filled systems had the best performances with the removal rates of more than 70%, the other way round, the removal rates of other systems were only about 20%. The distinguishable effects were also observed in removal performances of total phosphorus (TP) and total dissoluble phosphorus (TDP). The removal rates of TP and TDP in steel slag-filled systems were more than 90%, a much higher value, followed by that of the anthracite-filled system, more than 60%, but those of other systems being the less. Our study provided a potential mechanism to optimize the filter media design for the vertical flow constructed wetlands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated differences in delta N-15 of seston and icefishes from seven freshwater ecosystems with different trophic states in China. An increase of seston delta N-15 values was accompanied by an increase of total nitrogen and phosphorus concentrations. Significantly positive correlations were observed between delta N-15 of icefishes and delta N-15 of seston, total nitrogen and phosphorus concentrations. This study demonstrated that icefishes could be preferred indicators of anthropogenic contamination in test systems because they integrated waste inputs over long time periods and reflected the movement of waste through the pelagic food chain.