145 resultados para methyl salicylate


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of vinylidene dichloride (VDC) copolymers with methyl acrylate (MA) as comonomer (3-12wt%), was prepared by free-radical suspension copolymerization. The permeability coefficients of the copolymers to oxygen and carbon dioxide were measured at 1.0 MPa and at 30 degrees C, and those to water vapor were measured at 30 degrees C and 100% relative humidity. All the VDC/MA copolymers studied are semicrystalline. As the MA content increases, the permeability coefficients of the copolymers to oxygen, carbon dioxide, and water vapor are progressively increased, caused by decrease in crystalline fraction and increase in free volume of VDC/MA copolymers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Blends of poly(vinyl methyl ether) (PVME) and poly(methyl methacrylate) (PMMA) compatibilized by poly(styrene-block-methyl methacrylate) (P(S-b-MMA)) ale studied by FT-IR, DSC, excimer fluorescence spectrometry, and scanning electron microscopy (SEM). In FT-IR measurement the ratio of absorption intensity at 1107 cm(-1) to that at 1085 cm(-1) (I-1107/I-1085) reaches a minimum at about 10wt% block copolymer content. DSC results show that the glass transition temperature of PVME in the blends has a maximum at 10 wt% copolymer content. In plots of the ratio of excimer-to-monomer fluorescence emission intensities (I-E/I-M) VS block copolymer content, I-E/I-M increases rapidly above 10%. Ail these phenomena show that PS block chains penetrate into PVME: domains on addition of block copolymer. Above 10% copolymer content, block copolymer chains tend to form micelles in bulk phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two etching techniques are used to reveal the morphology of PC/PBA-cs-PMMA blend. One is based on acetic acid (CH3COOH) solutions, whereas the other uses CCl4/ C2H5OH (3/1 v/v). The latter approach shows to be more appropriate and successful for revealing the morphology of PC/PBA-cs-PMMA blend.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crystallization and unusual crystalline morphologies of compatible mixtures of tetrahydrofuran-methyl methacrylate diblock copolymer with tetrahydrofuran homopolymer were studied. It is shown that the PTHF [poly(tetrahydrofuran)] block of the copolymer cocrystalizes with the PTHF homopolymer in the PTHF microphase of the blend. However, the degree of crystallinity of the PTHF block is always lower than that of the PTHF homopolymer in the PTHF microphase. The crystallizability of the PTHF microphase increases appreciably with increasing PTHF microphase size and PTHF homopolymer weight fraction in the microphase. The morphology study of the blends shows that the crystalline morphology is strongly dependent on blend composition, copolymer composition and PTHF block length, as well as crystallization temperature. When alternating PTHF and PMMA [poly(methyl methacrylate)] lamellae are formed, the macroscopic crystalline morphology could be only observed when the thickness of the PTHF lamellae is large enough (similar to 20 nm). In the blend where PMMA spherical or cylindrical microphases are formed, the crystalline morphology changes dramatically with the change in the PTHF microdomain size and PMMA interdomain distance. Many unusual crystalline morphologies have been observed. A study of the solution-crystallized morphology of the blends at different temperatures shows that the morphology is also strongly dependent on the isothermal crystallization temperature, suggesting that the PMMA microdomains may have different effects on the morphology formation when the blend is crystallized at different rates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synthesis and characterization of a series of poly(amic methyl ester)s from five aromatic dianhydrides and a diamine, 4,4'-oxydianiline (ODA), are described. These poly(amic ester)s are obtained by the low-temperature polycondensation from dianhydrides derived diester-diacyl chlorides and ODA in DMAc solution with the inherent viscosities in the 0.5-0.9 dL/g range. These precursors are readily soluble in aprotic solvents. A detailed thermal study of the imidization process is presented, based on dynamic and isothermal TGA measurements, FTIR spectroscopy, and dynamic mechanical analysis. (C) 1997 John Wiley & Sons, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reaction of the half-sandwich rhenium(v) complexes [Re-Cl-4(C(5)Me(5))] or [Re(O)Cl-2(C(5)Me(5))] with H2S in chloroform in the presence of pyridine leads to the chiral dithiolato complex [ReO((S)(SCH2)C(5)Me(4))(C(5)Me(5))] 1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) were used to study the miscibility of blends of a graft copolymer of poly(methyl methacrylate) on linear low density polyethylene (LLDPE-g-PMMA, G-3) with poly(vinylidene fluoride)(b) (PVF2) and the compatibilization of blends of LLDPE/PVF2. The specific interaction between PMMA side chains and PVF2 in G-3/PVF2 binary blends is weaker than that between the homopolymers PMMA and PVF2. There are two states of PVF2 in the melt of a G-3/PVF2 (60/40, w/w) blend, one as pure PVF2 and the other interacting with PMMA side chains. The miscibility between PMMA side chains and PVF2 affects the crystallization of PVF2. LLDPE-g-PMMA was demonstrated to be a good compatibilizer in LLDPE/PVF2 blends, improving the interfacial adhesion and dispersion in the latter. Diffusion of PMMA side chains into PVF2 in the interfacial region reduces the crystallization rate and lowers the melting point (T-m) and the crystallization temperature (T-c) of PVF2 in the blends.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The miscibility of blends of poly(styrene-co-acrylonitrile) (SAN) with poly(methyl methacrylate) (PMMA) or poly(ethyl methacrylate) (PEMA) has been investigated by means of NMR and DSC techniques. It is found that there are intermolecular interactions between the phenyl groups in SAN and carbonyl groups in PMMA or PEMA, and the strength of this intermolecular interaction strongly depends on the properties of ester side groups in PEMA or PMMA, composition of the blends and a certain composition of the copolymer. It is this specific interaction instead of the intramolecular repulsion force within the copolymer that plays a key role for the miscibility of SAN/PMMA and SAN/PEMA blends.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The miscibility of blends of poly(vinylidene chloride-co-acrylonitrile) (VDC-AN) and poly(methyl methacrylate) (PMMA) has been studied with DSC, FT-IR, and NMR methods. The results indicate that the VDC-AN/PMMA blends are miscibile on a molecular level, and the dipole-dipole interactions between C=O and C-Cl-2 and/or interpolymer hydrogen bondings between COOCH3 and CN and CCl groups play the role on the miscibility of the blends. It is found that the -CCl2- groups have two different chemical environments in the pure VDC-AN copolymer, which may result from the different configurations of the copolymer, such as -CCl2- groups in the ''alternating'' segments and -CCl2- groups in the ''blocky'' segments as proposed. It is the -CCl2- group in the ''alternating'' segment that takes part in the dipole-dipole interaction with C=O group in PMMA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microphase separation, glass transition and crystallization of two series of tetrahydrofuran-methyl methacrylate diblock copolymers (PTHF-b-PMMA), one with a given PTHF block of M(n) = 5100 and the other with a given PTHF block of (M) over bar(n) = 7000, were studied in this present work. In the case of solution-cast materials, the microphase separation of the copolymer takes place first, with crystallization then gradually starting in the formed PTHF microphase. The T-g of the PMMA microphase shows a strong dependence on the molecular weight of the PMMA block, while the T-g of the PTHF microphase shows a strong dependence on the copolymer composition. The non-isothermal crystallization temperature (T-c) of the diblock copolymer decreases rapidly and continuously with the increase in the amorphous PMMA weight fraction; the lowest T-c of the copolymer is ca. 35 K lower than the T-c of the PTHF homopolymer. There also exists a T-c dependence on the molecular weight of the PTHF block. In addition, when the major component of the copolymer is PMMA, a strong dependence of the crystallizability of the copolymer on the molecular weight of the PTHF block is observed; the higher the molecular weight, then the stronger its crystallizability. The melting temperature of the block copolymer is dependent on the copolymer composition and the molecular weight of its crystallizable block. Copyright (C) 1996 Elsevier Science Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyurethane (PU) based on polyepichlorohydrin/poly(methyl methacrylate) (PECH/PMMA) interpenetrating polymer networks (IPNs) was synthesized by a simultaneous method. The effects of composition, hydroxyl group number of PECH, NCO/OH ratio and crosslinking agent content in IPNs were investigated in detail. Some other glycols, such as poly(ethylene glycol), poly(propylene glycol) and hydroxyl-terminated polybutadiene, were also used to obtain PU/PMMA IPNs. The interpenetrating and fracture behaviors of the IPNs are explained briefly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new comblike polymer host for polymer electrolyte was synthesized by reacting monomethyl ether of poly(ethylene glycol) with poly(vinyl methyl ether-alt-maleic anhydride) and endcapping the residual carboxylic acid with methanol. Butanone was selected as a solvent for the esterification in order to obtain a completely soluble product. The synthesis process was traced through by LR. Compared with the model compounds, the presumed structure of this comblike polymer has been proved to be valid by C-13 NMR The comb polymer is a white rubbery solid. It can be dissolved in butanone and THF, and manifests good film forming ability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The compatibility and crystallization of tetrahydrofuran-methyl methacrylate diblock copolymer (PTHF-b-PMMA)/tetrahydrofuran homopolymer (PTHF) blends were studied. Our results showed that the crystallization and morphology of compatible PTHF-b-PMMA/PTHF

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structure of tetraaqua-1kappa2O,2kappa2O-tetrakis-(mu-salicylato)-1:2kappa2O,1kappaO';1:2kappa2O,2kappaO';1kappaO:2kappaO';-1kappaO:2kappaO'-bis(salicylato)-1kappaO,O';2kappaO,O'-diyttrium tetrahydrate, [Y2(C7H5O3)6(H2O)4].4H2O, is composed of dimeri

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The glass transition behaviour, microphase separation morphology and crystallization of poly(vinyl alcohol)-g-poly(methyl methacrylate) graft copolymers (PVA-g-PMMA) were studied. A lamellar microphase separation morphology was formed, even for a copolyme