140 resultados para methyl dihydrojasmonate
Resumo:
The synthesis and characterization of a series of poly(amic methyl ester)s from five aromatic dianhydrides and a diamine, 4,4'-oxydianiline (ODA), are described. These poly(amic ester)s are obtained by the low-temperature polycondensation from dianhydrides derived diester-diacyl chlorides and ODA in DMAc solution with the inherent viscosities in the 0.5-0.9 dL/g range. These precursors are readily soluble in aprotic solvents. A detailed thermal study of the imidization process is presented, based on dynamic and isothermal TGA measurements, FTIR spectroscopy, and dynamic mechanical analysis. (C) 1997 John Wiley & Sons, Inc.
Resumo:
Reaction of the half-sandwich rhenium(v) complexes [Re-Cl-4(C(5)Me(5))] or [Re(O)Cl-2(C(5)Me(5))] with H2S in chloroform in the presence of pyridine leads to the chiral dithiolato complex [ReO((S)(SCH2)C(5)Me(4))(C(5)Me(5))] 1.
Resumo:
Differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) were used to study the miscibility of blends of a graft copolymer of poly(methyl methacrylate) on linear low density polyethylene (LLDPE-g-PMMA, G-3) with poly(vinylidene fluoride)(b) (PVF2) and the compatibilization of blends of LLDPE/PVF2. The specific interaction between PMMA side chains and PVF2 in G-3/PVF2 binary blends is weaker than that between the homopolymers PMMA and PVF2. There are two states of PVF2 in the melt of a G-3/PVF2 (60/40, w/w) blend, one as pure PVF2 and the other interacting with PMMA side chains. The miscibility between PMMA side chains and PVF2 affects the crystallization of PVF2. LLDPE-g-PMMA was demonstrated to be a good compatibilizer in LLDPE/PVF2 blends, improving the interfacial adhesion and dispersion in the latter. Diffusion of PMMA side chains into PVF2 in the interfacial region reduces the crystallization rate and lowers the melting point (T-m) and the crystallization temperature (T-c) of PVF2 in the blends.
Resumo:
The miscibility of blends of poly(styrene-co-acrylonitrile) (SAN) with poly(methyl methacrylate) (PMMA) or poly(ethyl methacrylate) (PEMA) has been investigated by means of NMR and DSC techniques. It is found that there are intermolecular interactions between the phenyl groups in SAN and carbonyl groups in PMMA or PEMA, and the strength of this intermolecular interaction strongly depends on the properties of ester side groups in PEMA or PMMA, composition of the blends and a certain composition of the copolymer. It is this specific interaction instead of the intramolecular repulsion force within the copolymer that plays a key role for the miscibility of SAN/PMMA and SAN/PEMA blends.
Resumo:
The miscibility of blends of poly(vinylidene chloride-co-acrylonitrile) (VDC-AN) and poly(methyl methacrylate) (PMMA) has been studied with DSC, FT-IR, and NMR methods. The results indicate that the VDC-AN/PMMA blends are miscibile on a molecular level, and the dipole-dipole interactions between C=O and C-Cl-2 and/or interpolymer hydrogen bondings between COOCH3 and CN and CCl groups play the role on the miscibility of the blends. It is found that the -CCl2- groups have two different chemical environments in the pure VDC-AN copolymer, which may result from the different configurations of the copolymer, such as -CCl2- groups in the ''alternating'' segments and -CCl2- groups in the ''blocky'' segments as proposed. It is the -CCl2- group in the ''alternating'' segment that takes part in the dipole-dipole interaction with C=O group in PMMA.
Resumo:
The microphase separation, glass transition and crystallization of two series of tetrahydrofuran-methyl methacrylate diblock copolymers (PTHF-b-PMMA), one with a given PTHF block of M(n) = 5100 and the other with a given PTHF block of (M) over bar(n) = 7000, were studied in this present work. In the case of solution-cast materials, the microphase separation of the copolymer takes place first, with crystallization then gradually starting in the formed PTHF microphase. The T-g of the PMMA microphase shows a strong dependence on the molecular weight of the PMMA block, while the T-g of the PTHF microphase shows a strong dependence on the copolymer composition. The non-isothermal crystallization temperature (T-c) of the diblock copolymer decreases rapidly and continuously with the increase in the amorphous PMMA weight fraction; the lowest T-c of the copolymer is ca. 35 K lower than the T-c of the PTHF homopolymer. There also exists a T-c dependence on the molecular weight of the PTHF block. In addition, when the major component of the copolymer is PMMA, a strong dependence of the crystallizability of the copolymer on the molecular weight of the PTHF block is observed; the higher the molecular weight, then the stronger its crystallizability. The melting temperature of the block copolymer is dependent on the copolymer composition and the molecular weight of its crystallizable block. Copyright (C) 1996 Elsevier Science Ltd.
Resumo:
Polyurethane (PU) based on polyepichlorohydrin/poly(methyl methacrylate) (PECH/PMMA) interpenetrating polymer networks (IPNs) was synthesized by a simultaneous method. The effects of composition, hydroxyl group number of PECH, NCO/OH ratio and crosslinking agent content in IPNs were investigated in detail. Some other glycols, such as poly(ethylene glycol), poly(propylene glycol) and hydroxyl-terminated polybutadiene, were also used to obtain PU/PMMA IPNs. The interpenetrating and fracture behaviors of the IPNs are explained briefly.
Resumo:
A new comblike polymer host for polymer electrolyte was synthesized by reacting monomethyl ether of poly(ethylene glycol) with poly(vinyl methyl ether-alt-maleic anhydride) and endcapping the residual carboxylic acid with methanol. Butanone was selected as a solvent for the esterification in order to obtain a completely soluble product. The synthesis process was traced through by LR. Compared with the model compounds, the presumed structure of this comblike polymer has been proved to be valid by C-13 NMR The comb polymer is a white rubbery solid. It can be dissolved in butanone and THF, and manifests good film forming ability.
Resumo:
The compatibility and crystallization of tetrahydrofuran-methyl methacrylate diblock copolymer (PTHF-b-PMMA)/tetrahydrofuran homopolymer (PTHF) blends were studied. Our results showed that the crystallization and morphology of compatible PTHF-b-PMMA/PTHF
Resumo:
The glass transition behaviour, microphase separation morphology and crystallization of poly(vinyl alcohol)-g-poly(methyl methacrylate) graft copolymers (PVA-g-PMMA) were studied. A lamellar microphase separation morphology was formed, even for a copolyme
Resumo:
Crystallization behavior of a series of newly synthesized poly (tetrahydrofuran-b-methyl methacrylate) diblock copolymer has been studied by differential scanning calorimetry (DSC) and X-ray scattering and diffraction techniques. The results show that the
Resumo:
The excimer fluorescence of a triblock copolymer, styrene-butadiene-styrene (SBS) containing 48 wt% polystyrene was used to investigate its miscibility with poly(vinyl methyl ether) (PVME). The excimer-to-monomer emission intensity ratio I(M)/I(E) can be used as a sensitive probe to determine the miscibility level in SBS/PVME blends: I(M)/I(E) is a function of PVME concentration, and reaches a maximum when the blend contains 60% PVME. The cloud point curve determined by light scattering shows a pseudo upper critical solution temperature diagram, which can be attributed to the effect of PB segments in SBS. The thermally induced phase separation of SBS/PVME blends can be observed by measuring I(M)/I(E), and the phase dissolution process was followed by measuring I(M)/I(E) at different times.
Resumo:
The complex of (CH3Cp)2Yb . DME (DME = dimethoxyethane) has been synthesized by the reduction with metallic sodium of the corresponding chloride (CH3CP)2YbCl. (CH3CP)2Yb . DME crystallized from DME in the monoclinic space group Cm, with cell constants a = 11.068(3), b = 12.338(4), c = 12.479(4) angstrom; beta = 100.51(2)-degrees, V = 1675(l) angstrom3, and D0 = 1.66 g/cm3 for Z = 4. Least-squares refinement of 1420 unique observed reflections led to final R of 0.0487. This complex can be used as a catalyst for the polymerization of methyl methacrylate (MMA).
Resumo:
The radiation-induced chain-scission and racemization of isotactic poly(methylmethacrylate)(iso-PMMA) in amorphous and semi-crystalline state as well as in solution have been studied with nuclear magnetic resonance and molar mass deter-mination. It is shown that the chain-scission is dominant for iso-PMMA in dilute solution while the racemization reaction is not favorable in this case. On the contrary, the racemization is favorable when iso-PMMA was irradiated in its crystalline state while chain-scission is not. Such experimental results could be well explained by the mobility of molecules and "cage effect". The hypothesis, we proposed previously that the chain-scission, racemization and recombination are in competition and the final result depends on the state of molecular motion at which iso-PMMA was irradiated, has been verified verified once again.
Resumo:
The compatibility and crystallization behaviour of the mixtures of poly (tetrahydrofuran-methyl methacrylate) diblock copolymer (PTHF-b-PMMA) with polyvinyl chloride has been studied. We found that the compatibility of these blends, in which there is special interaction between the homopolymer and the PMMA block of the copolymer, is much better than that of the AB/A type blends; and that the crystallization rate and crystallinity of PTHF microdomain changed greatly due to the swollen by PVC homopolymer. In this paper, these changes in cryatallization are well explained according to the theories of block copolymer blends and the density gradient model presented by JIANG Ming.