100 resultados para melting temperature


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nonisothermal crystallization and melting behavior of poly(3-hydroxybutyrate) (PHB) and maleated PHB were investigated by differential scanning calorimetry using various cooling rates. The results show that the crystallization behavior of maleated PHB from the melt greatly depends on cooling rates and its degree of grafting. With the increase in cooling rate, the crystallization process for PHB and maleated PHB begins at lower temperature. For maleated PHB, the introduction of maleic anhydride group hinders its crystallization, causing crystallization and nucleation rates to decrease, and crystallite size distribution becomes wider. The Avrami analysis, modified by Jeziorny, was used to describe the nonisothermal crystallization of PHB and maleated PHB. Double melting peaks for maleated PHB were observed, which was caused by recrystallization during the heating process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Crystallization and melting behavior of short ethylene sequence of metallocene ethylene/alpha -olefin copolymer with high comonomer content have been studied by standard DSC and modulated-temperature differential scanning calorimetry (M-TDSC) technique. In addition to high temperature endotherm around 120 degreesC, a low temperature endotherm is observed at lower temperatures (40-80 degreesC), depending on time and temperature of isothermal crystallization. The peak position of the low temperature endotherm T-m(low) varies linearly with the logarithm of crystallization time and the slope, D, decreases with increasing crystallization temperature T-c. The T-m(low) also depends on the thermal history before the crystallization at T-c, and an extrapolation of T-m(low) (30.6 degreesC) to a few seconds has been obtained after two step isothermal crystallization before the crystallization at 30 degreesC. The T-m(low) is nearly equal to T-c, and it indicates that the initial crystallization at low temperature is nearly reversible. Direct evidence of conformational. entropy change of secondary crystallization has been obtained by using M-TDSC technique. Both the M-TDSC result and the activation energy analysis of temperature dependence suggest that crystal perfection process and conformational entropy decreasing in residual amorphous co-exist during secondary crystallization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The origins of the single- and double-melting endotherms of isotactic polypropylene crystallized at different temperatures were studied carefully by differential scanning calorimetry, wide-angle X-ray diffraction, and small-angle X-ray scattering. The experimental data show that spontaneous crystallization occurs when the crystallization temperature is lower than 117 degrees C; thus the lamellae formed are imperfect. At a lower heating rate, the recrystallization or reorganization of these imperfect lamellae leads to double endotherms. On the other hand, when the crystallization temperature is higher than 136 degrees C, two major kinds of lamellae with different thickness are developed during the isothermal process, which also results in the double-melting endotherms. In the intermediate temperature range the lamellae formed are perfect, and there is only a single peak in the distribution of lamellar thickness. This explains the origin of the single-melting endotherm. (C) 2000 John Wiley & Sons, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The crystallization and melting behavior of mellocene-catalized branched and linear polyethylenes of low molecular weight was studied. It was found that the crystalline lattice of branched polyethylene is larger than that of linear polyethylene because of the existence of branched chains. The melting behavior of branched polyethylene is similar to that of linear polyethylene since the branched chains can not enter the lattice. However, the crystalline behavior of low molecular weight branched polyethylene is the same as that of high molecular weight linear polyethylene, but different with that of low molecular weigh linear polyethylene. Kinetics theory analysis evidenced that the transition temperature of growth regime of the branched polyethylene is about 20 degreesC lower than that of linear polyethylene with the same molecular weight. It may be attributed to the existence of short branched chains.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Poly(butylene succinate), (PBS) with different molecular weight was gamma -irradiated at different temperatures and various doses. PBS with high molecular weight and smaller peak area of crystal melting gave the highest gel content at the same temperatures and dose. A two-step irradiation (irradiation in molten state after irradiation at room temperature) gave the highest gel content in different conditions. This is due to the formation of network structure by pre-irradiation at room temperature that leads to less degradation. PBS prepared by two step irradiation was effective for improvement of heat stability because of high gel content formation. Unirradiated PBS sheets broke immediately at 110 degrees, while the irradiated sample (gel fraction, 50%) by a two step-method did not break even up to 200 minutes at 130 degreesC. The PBS sheets are biodegradable even after crosslinking.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Isothermal crystallization and melting behavior of nylon 66 and its blends with poly(ether imide) (PEI) were investigated by differential scanning calorimetry. Crystallization kinetics such as overall rate constant Z and index n were calculated according to Avrami approach. Crystallization in the blend was retarded with respect to that of pure nylon 66 by incorporation of PEI with high glass transition temperature (T-g). The lowest growth rate of the spherulites was observed in the blends containing 10 and 15 wt% fraction of PEI. A transition temperature where positively birefringent spherulites disappear and negative birefringent spherulites develop was measured by thermal analysis. The transition temperature increased with content of PEI in the blends. A suitable range of isothermally crystallization temperatures, 238.5-246 degrees C, is suggested For determining the equilibrium melting points by means of Hoffman-Weeks approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Poly(ether ether ketone)/poly(ether diphenyl ether ketone) blend containing 30 wt% PEDEK was used to investigate the melting behaviour of immiscible PEEK/PEDEK blends. The results measured from differential scanning calorimetry (d.s.c.) and wide-angle X-ray diffraction (WAXD) showed that immiscible PEEK/PEDEK blends isothermally crystallized at a temperature between Tg and Tm-2 (PEEK's normal melting point) from the glassy state also exhibited the multi-melting behaviour like poly(aryl ether ketones) homopolymers. In addition, the low-temperature melting peak was independent of composition of poly(aryl ether ketones) blends and only associated with the thermal history. (C) 1997 Elsevier Science Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The melting behavior of drawn, compression-molded isotactic polypropylene has been examined in terms of the influence of drawing conditions on the observed properties. Two endothermic peaks were observed on differential scanning calorimetry (DSC) for samples when high draw ratios and high heating rates were used during DSC tests. The peak at lower temperature is influenced by draw ratio, temperature, and rate, and exhibits a strong superheating effect. The species associated with this peak can partially recrystallize into another species associated with the peak at higher temperature during DSC measurements. The position of the peak at higher temperature depends only on draw ratio. It is proposed that the double-melting peaks at lower and higher temperature result from extremely thin quasi-amorphous or crystalline layers between microfibrils and the lamellar crystals within microfibrils, respectively. (C) 1993 John Wiley & Sons, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fe-B ultrafine amorphous alloy particles (UFAAP) were prepared by chemical reduction of Fe3+ with NaBHO4 and confirmed to be ultrafine amorphous particles by transmission electron microscopy and X-ray diffraction. The specific heat of the sample was measured by a high precision adiabatic calorimeter, and a differential scanning calorimeter was used for thermal stability analysis. A topological structure of Fe-B atoms is proposed to explain two crystallization peaks and a melting peak observed at T=600, 868 and 1645 K, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A continuous spatial temperature gradient was established in capillary electrophoresis by using a simple temperature control device. The temperature profile along the capillary was predicted by theoretical calculations. A nearly linear spatial temperature gradient was established and applied to DNA mutation detection. By spanning a wide temperature range, it was possible to perform simultaneous heteroduplex analysis for various mutation types that have different melting temperatures.