125 resultados para mater
Resumo:
About Phi 45 mm LiAlO2 single crystal was grown by Czochralski (Cz) technique. However, the full-width at half-maximum (FWHM) value was high to 116.9 arcsec. After three vapor transport equilibration (VTE) processes, we can obtain high-quality LiAlO2 slice with the FWHM value of 44.2 arcsec. ZnO films were fabricated on as-grown slices and after-VTE ones by pulsed laser deposition (PLD). It was found that ZnO films on the two slices have similar crystallinity, optical transmittance and optical band gap at room temperature. These results not only show that LAO substrate is suitable for ZnO growth, but also prove that the crystal quality of LAO substrate slightly affects the structural and optical properties of ZnO film.
Resumo:
Highly (001) orientation LiGaO2 layers have been successfully fabricated on (100) beta-Ga2O3 surface by vapor transport equilibration (VTE) technique. The temperature is very important for the WE treatment. At low temperature (800 degrees C), LiGaO(2)layers are textured. As the temperature was raised to 1100 C the layer becomes highly oriented in the [100] direction. It shows that the best temperature for WE treatment is 1100 degrees C. This technique is promising to fabricate small lattice mismatch composite substrate of LiGaO2 (001)//beta-Ga2O3 (100) for GaN films. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Cerium-doped lutetium pyrosilicate crystal, Ce:Lu2Si2O7 (Ce:LPS), was grown by the Czochralski method. The segregation coefficient of Ce3+ ion was studied by the ICP-AES method. X-ray diffraction analysis showed that the structure of Ce:LPS crystal was monoclinic symmetry with space group of C2/m. Perfect cleavage planes (110) and imperfect cleavage planes (001) were observed by optical microscope. The reasons why it is difficult to grow crack-free crystals were studied. After optimized growth parameters, a Ce:LPS crystal with dimension of Phi 25 x 30 mm was grown, which is colorless, high optical quality, cracking-free and no inclusions. The transmittance of Ce:LPS crystal from 380 to 800 nm is over 82% and there is no observable absorption. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
ZnO thin films were deposited on the substrates of (100) gamma-LiAlO2 at 400, 550 and 700 degrees C using pulsed laser deposition (PLD) with the fixed oxygen pressure of 20 Pa, respectively. When the substrate temperature is 400 degrees C, the grain size of the film is less than 1 mu m observed by Leitz microscope and measured by X-ray diffraction (XRD). As the substrate temperature increases to 550 degrees C, highly-preferred c-orientation and high-quality ZnO film can be attained. While the substrate temperature rises to 700 degrees C, more defects appears on the surface of film and the ZnO films become polycrystalline again possibly because more Li of the substrate diffused into the ZnO film at high substrate temperature. The photoluminescence (PL) spectra of ZnO films at room temperature show the blue emission peaks centered at 430 nm. We suggest that the blue emission corresponds to the electron transition from the level of interstitial Zn to the valence band. Meanwhile, the films grown on gamma-LiAlO2 (LAO) exhibit green emission centered at 540 nm, which seemed to be ascribed to excess zinc and/or oxygen vacancy in the ZnO films caused by diffusion of Li. from the substrates into the films during the deposition.
Resumo:
We obtain Au and Ag nanoparticles precipitated in glasses by irradiation of focused femtosecond pulses, and investigate the nonlinear absorptions of the glasses by using Z-scan technique with ns pulses at 532 nm. We observe the saturable absorption behavior for An nanoparticles precipitated glasses and the reverse saturable ones for Ag ones. We also obtain, by fitting to the experimental results in the light of the local field effect near and away from the surface plasmon resonance, chi(m)((3)) = 4.5 x 10(-7) and 5.9 x 10(-8) esu for m the imaginary parts of the third-order susceptibilities for Au and Ag nanoparticles, respectively. The nonlinear response of Au nanoparticles in the glass samples arises mainly from the hot-electron contribution and the saturation of the interband transitions near the surface plasmon resonance, whereas that of Ag nanoparticles in the glass samples from the interband transitions. These show that the obtained glasses can be used as optoelectronic devices suiting for different demands. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We report on photoreduction of Ag+ in aluminoborate glasses induced by irradiation of a femtosecond laser. Novel fluorescence was observed in the femtosecond laser irradiated glass when excited by a 365 nm ultraviolet lamp. Optical absorption, emission, and electron spin resonance spectra of the glass samples demonstrated that after the laser irradiation, portions of silver ions near the focused part of the laser beam inside the glass were reduced to silver atoms, which resulted in the formation of the characteristic fluorescence. The observed phenomenon may have promising applications in the fabrication of functional optical devices.
Resumo:
The annealing effects of sapphire substrates on the quality of epitaxial ZnO films grown by dc reactive magnetron sputtering were studied. The atomic steps formed on (0001) sapphire (alpha-Al2O3) substrates surface by annealing at high temperature were analyzed by atomic force microscopy. Their influence on the growth of ZnO films was examined by X-ray diffraction and photoluminescence measurements. Experimental results indicate that the film quality is strongly affected by annealing treatment of the sapphire substrate surface. The optimum annealing temperature of sapphire substrates for ZnO grown by magnetron sputtering is 1400 degrees C for 1 h in air.
Resumo:
Well-aligned ZnO films have been successfully prepared by using low-temperature hydrothermal approach on (0001) sapphire substrates that were pre-coated with a ZnO nano-layer by dip-coating. The characterizations of scanning electron microscopy (SEM) and X-ray diffraction (XRD) indicate that the ZnO films consist of hexagonal rods that grow along the c axis based on the sapphire substrates. It is found that the size of ZnO rods can be adjusted by an aqueous solution with some methenamine. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The novel nano-ultrafine powders for the preparation of CaCu3Ti4O12 ceramic were prepared by the sol-gel method and citrate auto-ignition method. The obtained precursor powders were pressed, sintered at 1000 degrees C to fabricate microcrystal CaCu3Ti4O12 ceramic. The microcrystalline phase of CaCu3Ti4O12 was confirmed by X-ray powder diffraction (XRD). The morphology and size of the grains of the powders and ceramics under different heat treatments were observed using scanning electron microscopy (SEM). The relative dielectric constant of the ceramic sintered at 1000 degrees C was measured with a magnitude of more than 10(4) at room temperature, which was approaching to those of Pb-containing complex perovskite ceramics, and the loss tangent was less than 0.20 in a broad frequency region. The relative dielectric constant and loss tangent were also compared with that of CaCu3Ti4O12 ceramic prepared by other reported methods. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Homoepitaxial ZnO films have been grown via liquid-phase epitaxy (LPE) on (000 1) oriented ZnO substrates. X-ray rocking curve revealed the high quality of the ZnO films with a FWHM of 40 arc sec. Films of thickness about 20 gm were gown in the temperature range 700-720 degrees C. The growth rate of ZnO films was estimated to be 0.3 mu m h(-1). Atomic force microscope analysis showed that the surface roughness of ZnO films was very low, which further confirmed the high crystallinity of ZnO films. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Crystalline beta-BBO layers have been successfully prepared on (0 0 1)-oriented Sr2+-doped alpha-BBO substrates using vapor transport equilibration technique. The layers were characterized by X-ray diffraction, X-ray rocking curve and transmission spectra. The present results manifest that the VTE treatment time and powder ratio are important factors on the preparation of beta-BBO layers. beta-BBO layers with a highly (0 0 l) preferred orientation were obtained according to XRD profiles. The full width at half-maximum of the rocking curve for the layer is as low as about 1000 in., which shows the high crystallinity of the layer. These results reveal the possibility of fabricating beta-BBO (0 0 1) layers on (0 0 1)-oriented Sr2+-doped alpha-BBO substrates by VTE. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, some results on visible luminescence performed on Yb3+-doped gadolinium gallium garnets under 165 and 940 nm excitation were presented. The upconversion luminescence was ascribed to Yb3+ cooperative luminescence and the presence of rare earth impurity ions. The gain cross-sections of Yb:GGG crystal as a function of excited-state population fraction P were studied. Emission spectra under 165 nm at 20 K showed there was no charge transfer luminescence in Yb:GGG. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
In this paper, single crystal of ytterbium (Yb) doped Ca-5(PO4)(3)F (FAP) has been grown along the c-axis by using the Czochralski method. The segregation coefficients of Yb3+ in the Yb:FAP crystal has been determined by ICP-AES method. The absorption spectrum, fluorescence spectrum and fluorescence lifetime of the Yb:FAP crystal has been also measured at room temperature. In the absorption spectra, there are two absorption bands at 904 and 982 nm, respectively, which are suitable for InGaAs diode laser pumping. The absorption cross-section (sigma(abs)) is 5.117 x 10(-20) cm(2) with an FWHM of 4 nm at 982 nm. The emission cross-section is (sigma(em)) 3.678 x 10(-20) cm(2) at 1042 nm. Favorable values of the absorption cross-section at about 982 nm are promising candidates for laser diode (LD) pumping. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
For the first time, a quaternary doping system of Er3+, Yb3+, Ce3+, Na+:CaF2 single crystal was demonstrated to have high fluorescence yield in the eye-safe 1.5 mu m region under 980 nm laser diode pumping, with relatively broad and flat gain curves. A simplified model was established to illustrate the effect of Ce3+ on the branching ratio for the Er3+4I11/2 -> I-4(13/2) transition. With 0.2-at.% Er3+ and 2.0-at.% Ce3+ in the quaternary-doped CaF2 crystal, the branching ratio was estimated to be improved more than 40 times by the deactivating effect of Ce3+ on the Er3+ 4I11/2 level. The quaternary-doped CaF2, system shows great potential to achieve high laser performance in the 1.5 mu m region. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The Cr(0.1%),Yb(10%):GGG crystals have been grown by the Czochralski method. The chemical composition is: Yb0.33Gd2.47Cr0.005Ga5.2O12. There are no observed Yb3+ ions substituting Ga3+ ions, just like that of Yb:GGG crystals. The defects in Cr,Yb:GGG crystal were also investigated. The absorption and emission spectra of Cr,Yb:GGG crystal at room temperature have been measured. The 02 and H-2 annealing effect of Cr,Yb:GGG crystal have been compared. Cr3+ can greatly weak the visible luminescence of this crystal. The Cr-Yb-codoped crystals may be potential materials for compact, efficient, high stability LD pumped solid state lasers. (C) 2006 Elsevier B.V. All rights reserved.