119 resultados para lipid bilayer


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structure and the electron-transfer of cytochrome c binding on the anionic lipid vesicles were analyzed by electrochemical and various spectroscopic methods. It was found that upon binding to anionic lipid membrane, the formal potential of. cytochrome c shifted 30 mV negatively indicating an eager redox interaction than that in its native state. This is due to the local alteration of the coordination and the heme crevice. The structural Perturbation in which a molten globule-like state is formed during binding to anionic lipid vesicles is more important. This study may help to understand the mechanism of the electron-transfer reactions of cytochrome c at the mitochondrial membrane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here, we describe a new method to study the biointeraction between Escherichia coli and mannose by using supramolecular assemblies composed of polydiacetylene supported on the self-assembled monolayer of octadecanethiol on a gold electrode. These prepared bilayer materials simply are an excellent protosystem to study a range of important sensor-related issues. The experimental results from UV-vis spectroscopy, resonance Raman spectroscopy, and electrochemistry confirm that the specific interactions between E. coli and mannose can cause conformational changes of the polydiacetylene backbone rather than simple nonspecific adsorption. Moreover, the direct electrochemical detection by polydiacetylene supramolecular assemblies not only opens a new path for the use of these membranes in the area of biosensor development but also offers new possibilities for diagnostic applications and screening for binding ligands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We synthesized a kind of gold nanoparticle protected by a synthetic lipid (didodecyidimethylammonium bromide, DDAB). With the help of these gold nanoparticles, hemoglobin can exhibit a direct electron transfer (DET) reaction. The formal potential locates at -169 mV vs. Ag/AgCl. Spectral data indicated the hemoglobin on the electrode was not denatured. The lipid-protected gold nanoparticles were very stable (for at least 8 months). Their average diameter is 6.42 nm. It is the first time to use monolayer-protected nanoparticles to realize the direct electrochemistry of protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The conformational transition of DNA induced by the interaction between DNA and a cationic lipid vesicle, didodecyidimethylammonium bromide (DDAB), had been investigated by circular dichroism (CD) and UV spectroscopy methods. We used singular value decomposition least squares method (SVDLS) to analyze the experimental CD spectra. Although pH value influenced the conformation of DNA in solution, the results showed that upon binding to double helical DNA, positively charged liposomes induced a conformational transition of DNA molecules from the native B-form to more compact conformations. At the same time, no obvious conformational changes occurred at single-strand DNA (ssDNA). While the cationic lipid vesicles and double-strand DNA (dsDNA) were mixed at a high molar ratio of DDAB vesicles to dsDNA, the conformation of dsDNA transformed from the B-form to the C-form resulting in an increase in duplex stability (DeltaT(m) = 8 +/- 0.4 degreesC). An increasing in T-m was also observed while the cationic lipid vesicles interacted with ssDNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The vesicle of didodecyldhnethylammonimn bromide (DDAB) which contained tetrathiafulvalene (TTF) was mixed with xanthine oxidase, and the mixture was cast on the pyrolytic graphite electrode. The lipid films were used to supply a biological environment resembling biomembrane on the surface of the electrode. TTF was used as a mediator because of its high electron-transfer efficiency. A novel xanthine biosensor based on cast DDAB film was developed. The effects of pH and operating potential were explored for optimum analytical performance by using the amperometric method. The response time of the biosensor was less than 10 s. The detection limit of the biosensor was 3.2 x 10(-7) mol/L and the liner range was from 4 x 10(-7) mol/L to 2.4 x 10(-6) mol/L.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ferrocene-lipid film electrode was successfully prepared by means of casting the solution of ferrocene and lipid in chloroform onto a glassy carbon (GC) electrode surface. Ferrocene saved in the biological membrane gave a couple of quasi-reversible peaks of cyclic voltammogram. The electrode displays a preferential electrocatalytic oxidation of dopamine (DA). The effect of electroccatalytic oxidation of DA depends on the solution pH and the negative charge lipid is in favor of catalytic oxidation of DA. The characteristic was employed for separating the electrochemical responses of DA and ascorbic acid (AA). The electrode was assessed for the voltammetric differentiation of DA and AA. The measurement of DA can be achieved with differential pulse voltammetry in the, presence of high concentration of AA. The catalytic peak current was proportional to the concentration of DA in the range of 1 x 10(-4)-3 x 10(-3) mol/L.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DNA interaction with cationic lipids promises to be a versatile and effective synthetic transfection agent. This paper presents the study on binding of a simple artifical cationic lipid, cetyltrimethylammonium bromide (CTAB), to calf thymus DNA (CT DNA) prior to the condensation process, taking methyl green (MG) as a probe. The results show that the CTAB binds to DNA through electrostatic interaction forming a hydrophobic complex, thus changing the micro-environment of duplex of DNA, so the binding state of MG and DNA is changed, and a complex CTAB-CT DNA-MG is formed. This fact suggests a new way to mediate the conformation of molecular assemblies of DNA and lipids. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel glucose biosensor based on cast lipid film was developed. This model of biological membrane was used to supply a biological environment on the surface of the electrode, moreover it could greatly reduce the interference and effectively exclude hydrophilic electroactive material from reaching the detecting surface. TTF was selected as a mediator because of its high electron-transfer efficiency, and it was incorporated in the lipid film firmly. Glucose oxidase was immobilized in hydrogel covered on the lipid film. The effects of pH, operating potential were explored for the optimum analytical performance by using amperometric method. The response time of the biosensor was less than 20 s, and the linear range is up to 10 mmol l(-1) (corr. coeff. 0.9932) with the detection limit of 2 x 10(-5) mol l(-1). The biosensor also exihibited good stability and reproducibility. (C) 2000 Elsevier Science S.A. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interaction of microperoxidase-11 (MP11) with cationic lipid vesicles of didodecyldimethylammonium bromide (DDAB) induces an alpha -helical conformation from random coil conformations in solution and this change then makes heme macrocycle more distorted. DDAB-induced MP11 conformations were investigated by cyclic votammetry (CV), circular dichroism (CD) and UV-vis spectrometry. All results indicate that the binding of MP11 in solution to DDAB vesicles and the ordered structure formation are driven by mostly electrostatic interaction between negatively charged residues in the undecapeptide and positively charged lipid headgroups on the membrane surface. Upon binding to DDAB, its half-peak potential was also changed. The mechanism of the interaction between MP11 and DDAB was also discussed. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A ferrocene-dimyristoyl phosphatidylcholine (DMPC) film electrode was prepared by casting the solution of ferrocene and DMPC in chloroform onto a glassy carbon electrode surface. Ferrocene retained in the biological membrane gave a couple of irreversible peaks of cyclic voltammogram. The electrode exhibited good electrocatalytic activity for the oxidation of ascorbic acid (H(2)A) in phosphate buffer (pH 6.64) with an anodic peak potential of +340 mV (vs. Ag/AgCl). The anodic current was directly proportional to the square root of the scan rate below 150 mV s(-1). The influence of the pH value was investigated and it was observed that pH 6.64 was the suitable value to the anodic peak potential and current. The thickness of the film and the interference of uric acid were also studied. The electrode can be used to determine H(2)A in the presence of equimolar uric acid. The catalytic peak current increased linearly with the concentration of H(2)A in the range of 1 X 10(-4)-5 X 10(-3) mol L-1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel type of potassium sensor based on the capacitance change of valinomycin-incorporated bilayer supported on a gold electrode has been developed and characterized. The lipid membrane was Formed by painted method and monitored simultaneously by capacitance variation. The capacitance of the electrode-supported membrane was found to be modulated by different concentrations of K+. Investigating the capacitance change allows a simple and specific technique for the measurement of potassium ion in solution. Especially, the homemade capacitance meter is, to our knowledge, used to monitor the bilayer membrane formation and detect K+ for the first time. It has been proved that this capacitance measurement is a very useful technique because it is simple and sensitive compared to the other methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of La3+ on the structure and function of human erythrocyte membranes were investigated by fluorescence polarization, spin-labeled electron spin resonance (ESR) and differential scanning calorimetry (DSC). The results showed that increasing concentrations of La3+ inhibited (Na++K+)-ATPase and Mg2+-ATPase activities. La3+ lowered the lipid fluidity of erythrocyte membranes and induced structural transitions in erythrocyte membranes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The bilayer formation behavior of two chiral ferroelectric liquid crystal molecules at the air-water interface was studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrochemical behaviour of TCNQ modified S-BLM has been investigated through capacitor measurement and cyclic voltammetry (CV) which shows the surface wave behaviour of the TCNQ redox form. The voltammetry CV has shown different pairs peak at different scan rates and a possible explanation is provided.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monensin was incorporated into phospholipid/alkanethiol bilayers on the gold electrode surface by a new, paint-freeze method to deposit a lipid monolayer on the self-assembled monolayers (SAMs) of alkanethiol. The advantages of this assembly system with a suitable function for investigating the ion selective transfer across the mimetic biomembrane are based on the characteristics of SAMs of alkanethiols and monensin. On the one hand, the SAMs of alkanethiols bring out their efficiency of packing and coverage of the metal substrate and relatively long-term stability; on the other hand, monensin improves the ion selectivity noticeably. The selectivity coefficients K-Na+,K-K+, K-Na+,K-Rb+ and K-Na+,K-Ag+ are 6 x 10(-2), 7.2 x 10(-3) and 30 respectively. However, the selectivity coefficient K-Na+,K-Li+ could not be obtained by a potentiometric method due to the specific interaction between Li+ and phospholipid and the lower degree of complexion between Li+ and monensin. The potential response of this bilayer system to monovalent ions is fairly good. For example, the slope of the response to Na+ is close to 60 mV per decade and its linearity range is from 10(-1) to 10(-5) M with a detection limit of 2 x 10(-6) M, The bilayer is stable for at least two months without changing its properties. This monensin incorporated lipid/alkanethiol bilayer is a good mimetic biomembrane system, which provides great promise for investigating the ion transfer mechanism across the biomembrane and developing a practical biosensor.