93 resultados para heterogeneous computation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three chiral Mn(salen) complexes were immobilized into different mesoporous material via phenoxy group by a simplified method and they show high activity and enantioselectivity for asymmetric epoxidation of various substituted unfunctional olefins. The heterogeneous Mn(salen) catalysts show comparable ee values for asymmetric epoxidation of styrene and 6-cyano-2,2-dimethylchromene and much higher ee values for epoxidation of a-methylstyrene (heterogeneous 79.7% ee versus homogeneous 26.4% ee) and cis-beta-methylstyrene (heterogeneous 94.9% ee versus homogeneous 25.3% ee for cis-epoxide) than the homogeneous catalysts. These heterogeneous catalysts also remarkably alter the cis/trans ratio of epoxides for asymmetric epoxidation of cis-beta-methylstyrene (heterogeneous 21 versus homogeneous 0.38). The axial tether group does not make a big effect on ee values and the increase in ee value and change in cis/trans ratio are mainly attributed to the axial immobilization mode and the support effect of heterogeneous catalysts. The catalysts keep constant ee values for the recycle tests of eight times for asymmetric epoxidation of a-methylstyrene. And several possibilities were proposed to elucidate the difference in ee values of heterogeneous catalysts from homogeneous catalysts. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We conducted the liquid phase oxidation of toluene with molecular oxygen over heterogeneous catalysts of copper-based binary metal oxides. Among the copper-based binary metal oxides, iron-copper binary oxide (Fe/Cu = 0.3 atomic ratio) was found to be the best catalyst. In the presence of pyridine, overoxidation of benzaldehyde to benzoic acid was partially prevented. As a result, highly selective formation of benzaldehyde (86% selectivity) was observed after 2 h of reaction (7% conversion of toluene) at 463 K and 1.0 MPa of oxygen atmosphere in the presence of pyridine. These catalytic performances were similar or better than those in the gas phase oxidation of toluene at reaction temperatures higher than 473 K and under 0.5-2.5 MPa. It was suggested from competitive adsorption measurements that pyridine could reduce the adsorption of benzaldehyde. At a long reaction time of 4 It, the conversion increased to 25% and benzoic acid became the predominant reaction product (72% selectivity) in the absence of pyridine. The yield of benzoic acid was higher than that in the Snia-Viscosa process, which requires corrosive halogen ions and acidic solvents in the homogeneous reaction media. The catalyst was easily recycled by simple filtration and reusable after washing and drying.