128 resultados para few-mode isotropic waveguides


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A set of exact one-dimensional solutions to coupled nonlinear equations describing the propagation of a relativistic ultrashort circularly polarized laser pulse in a cold collisionless and bounded plasma where electrons have an initial velocity in the laser propagating direction is presented. The solutions investigated here are in the form of quickly moving envelop solitons at a propagation velocity comparable to the light speed. The features of solitons in both underdense and overdense plasmas with electrons having different given initial velocities in the laser propagating direction are described. It is found that the amplitude of solitons is larger and soliton width shorter in plasmas where electrons have a larger initial velocity. In overdense plasmas, soliton duration is shorter, the amplitude higher than that in underdense plasmas where electrons have the same initial velocity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Incoherent subharmonic light scattering in isotropic media is a new kind of nonlinear light scattering, which involves single input photon and multiple output photons of equal frequency. We investigate theoretically the dependence of the subharmonic scattering intensity on the hyperpolarizability of molecules and the incident intensity using nonlinear optics theory similar to that used for Hyper-Rayleigh scattering and degenerate optical parametric oscillators. It is derived that the subharmonic scattering intensities grow exponentially or superexponentially with the hyperpolarizability of molecules and the incident intensity. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By solving numerically the full Maxwell-Bloch equations without the slowly varying envelope approximation and the rotating-wave approximation, we investigate the effects of Lorentz local field correction (LFC) on the propagation properties of few-cycle laser pulse in a dense A-type three-level atomic medium. We find that: when the area of the input pulse is larger, split of pulse occurs and the number of the sub-pulses with LFC is larger than that without LFC; at the same distance, the time interval between the first sub-pulse and the second sub-pulse in the case without LFC is longer than that with LFC, the time of pulse appearing in the case without LFC is later than that in the case with LFC, and the two phenomena are more obvious with propagation distance increasing; time evolution rules of the populations of levels vertical bar 1 >, vertical bar 2 > and vertical bar 3 > in the two cases with and without LFC are much different. When the area of the input pulse is smaller, effects of LFC on time evolutions of the pulse and populations are remarkably smaller than those in the case of larger area pulse. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe the fabrication of a Mach-Zehnder optical modulator in LiNbO3 by femtosecond laser micormachining, which is composed of optical waveguides inscripted by a femtosecond laser and embedded microelectrodes subsequently using femtosecond laser ablation and selective electroless plating. A half-wave voltage close to 19 V is achieved at a wavelength of 632.8 nm with an interaction length of 2.6 mm. This simple and cost-effective technique opens up new opportunities for fabricating integrated electro-optic devices. (C) 2008 Optical Society of America

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The asymmetric photoionization of atoms irradiated by intense, few-cycle laser pulses is studied numerically. The results show that the pulse intensity affects the asymmetric photoionization in three aspects. First, at higher intensities, the asymmetry becomes distinctive for few-cycle pulses of longer durations. Second, as the laser intensity increases, the maximal asymmetry first decreases then increases after it has reached a minimal value. Last, the value of the carrier-envelope phase corresponding to the maximal asymmetry varies with the pulse intensity. This study reveals that the increasing of pulse intensity is helpful for observing the asymmetric photoionization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diode-pumped passively mode-locked laser operation of Yb3+,Na+:CaF2 single crystal has been demonstrated for the first time. By using a SESAM ( semiconductor saturable mirror), simultaneous transform-limited 1-ps passively mode-locked pulses, with the repetition rate of 183MHz, were obtained under the self-Q-switched envelope induced by the laser medium. The average output power of 360mW was attained at 1047nm for 3.34W of absorbed power at 976nm, and the corresponding pulse peak power arrived at 27kW, indicating the promising application of Yb3+,Na+-codoped CaF2 crystals in achieving ultra-short pulses and high pulse peak power. (c) 2005 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photoionization of hydrogen atoms in few-cycle laser pulses is studied numerically. The total ionization probability, the. instantaneous ionization probability; and the partial ionization probabilities in a pair of opposite directions are obtained. The partial ionization probabilities are not always equal to each other which is termed as inversion asymmetry. The variation of asymmetry degree with the CE phase, the pulse duration and the pulse intensity is studied. It is found that the pulse intensity affects the asymmetry degree in many aspects. Firstly, the asymmetry is more distinct at higher intensities than that at lower intensities when the pulse duration exceeds 4 cycles; secondly, the maximal asymmetry in lower intensities varies with the CE phase visibly while at higher intensities riot; thirdly, the partial ionization probabilities equal to each other for some special CE phases. For lower pulse intensities, the corresponding value of CE phase is always 0.5 pi and 1.5 pi, while for higher pulse intensities, the corresponding value varies with the pulse intensity. Similar phenomena were observed in a recent experiment using few-cycle radio-frequency (RF) pulses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the propagation of an arbitrary elliptically polarized few-cycle ultrashort laser pulse in resonant two-level quantum systems using an iterative predictor-corrector finite-difference time-domain method. It is shown that when the initial effective area is equal to 2 pi, the effective area will remain invariant during the course of propagation, and a complete Rabi oscillation can be achieved. However, for an elliptically polarized few-cycle ultrashort laser pulse, polarization conversion can occur. Eventually, the laser pulse will evolve into two separate circularly polarized laser pulses with opposite helicities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The photoionization of H atoms irradiated by few-cycle laser pulses is studied numerically. The variations of the total ionization, the partial ionizations in opposite directions, and the corresponding asymmetry with the carrier-envelope phase in several pulse durations are obtained. We find that besides a stronger modulation on the partial ionizations, the change of pulse duration leads to a shift along carrier-envelope (CE) phase in the calculated signals. The phase shift arises from the nonlinear property of ionization and relates closely to the Coulomb attraction of the parent ion to the ionized electron. Our calculations show good agreement with the experimental observation under similar conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Propagation of a few-cycle laser pulse in a V-type three-level system (fine structure levels of rubidium) is investigated numerically. The full three-level Maxwell-Bloch equations without the rotating wave approximation and the standing slowly varying envelope approximation are solved by using a finite-difference time-domain method. It is shown that, when the usual unequal oscillator strengths are considered, self-induced transparency cannot be recovered and higher spectral components can be produced even for small-area pulses. (c) 2005 Pleiades Publishing, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The brightness of a particular harmonic order is optimized for the chirp and initial phase of the laser pulse by genetic algorithm. The influences of the chirp and initial phase of the excitation pulse on the harmonic spectra are discussed in terms of the semi-classical model including the propagation effects. The results indicate that the harmonic intensity and cutoff have strong dependence on the chirp of the laser pulse, but slightly on its initial phase. The high-order harmonics can be enhanced by the optimal laser pulse and its cutoff can be tuned by optimization of the chirp and initial phase of the laser pulse.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Fourier analysis method is used to accurately determine not only the absolute phase but also the temporal-pulse phase of an isolated few-cycle (chirped) laser pulse. This method is independent of the pulse shape and can fully characterize the light wave even though only a few samples per optical cycle are available. It paves the way for investigating the absolute phase-dependent extreme nonlinear optics, and the evolutions of the absolute phase and the temporal-pulse phase of few-cycle laser pulses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a scaling law of photoionization of atoms irradiated by intense, few- cycle laser pulses is established. The scaling law sets a relation to the phase- dependent ionization with the kinetic energy of photoelectrons, the duration and peak intensity of short pulses, and the ionization potential of the target atoms. We find that it will be advantageous to manifest the phase- dependent photoionization by choosing the target atoms with larger ionization potential, using laser with smaller carrier- frequency, and increasing the pulse intensity. (c) 2007 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stimulated Raman scattering (SRS) of a relativistic laser in plasmas is studied in the framework of the standard equation set of a three-wave process. As far as every wave involved in the process is concerned, its evolution has two aspects: time-dependent amplitude and time-dependent frequency. These two aspects affect each other. Strict analysis and numerical experiment on the full three-wave equation set reveal that a fast growing mode of the instability, which could reach a balance or saturation point during a period far shorter than an estimation based on conventional analysis, could take place in a standard three-wave process without coupling with a fourth wave. This fast growing mode is found to stem from the constraint set by the background density on the amplitude of the driven Langmuir wave. The effect of various parameters on the development of the SRS instability is studied by numerical calculation of the history of the instability in different cases. (c) 2007 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The propagation of an arbitrary polarized few-cycle ultrashort laser pulse in a degenerate three-level medium is investigated by using an iterative predictor-corrector finite-difference time-domain method. It is found that the polarization evolution of the ultrashort laser pulse is dependent not only on the initial atomic coherence of the medium but also on the polarization condition of the incident laser pulse. When the initial effective area is equal to 2 pi, complete linear-to-circular and circular-to-linear polarization conversion of few-cycle ultrashort laser pulses can be achieved due to the quantum interference effects between the two different transition paths.