112 resultados para embodied energy analysis
Resumo:
Tb(1-x)BO3:xEu(3+) (x = 0-1) microsphere phosphors have been successfully prepared by a simple hydrothermal process directly without further sintering treatment. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), photoluminescence (PL), low-voltage cathodoluminescence (CL), and time-resolved emission spectra as well as lifetimes were used to characterize the samples.
Resumo:
In this paper, a quantum chemistry method was used to investigate the effect of different sizes of substituted phenanthrolines on absorption, energy transfer, and the electroluminescent performance of a series of Eu(TTA)(3)L (L = [1,10] phenanthroline (Phen), Pyrazino[2,3-f][1,10]phenanthroline (PyPhen), 2-methylprrazino[2,3-f][1,10] phenanthroline(MPP), dipyrido[3,2-a:2',3'-c]phenazine(DPPz), 11-methyldipyrido[3,2-a:2',3'c]phenazine(MDPz), 11.12-dimethyldipyrido[3,2-a:2',3'-c]phenazine(DDPz), and benzo[i]dipyrido[3,2-a:2',3'-c]phenazine (BDPz)) complexes. Absorption spectra calculations show that different sizes of secondary ligands have different effects on transition characters, intensities, and absorption peak positions.
Resumo:
By incorporating two phosphorescent dyes, namely, iridium(III)[bis(4,6-difluorophenyl)-pyridinato-N,C-2']picolinate (Flrpic) for blue emission and bis(2-(9,9-diethyl-9H-fluoren-2-yl)-1-phenyl-1 H-benzoimidazol-N,C-3) iridium(acetylacetonate) ((fbi)(2)Ir(acac)) for orange emission, into a single-energy well-like emissive layer, an extremely high-efficiency white organic light-emitting diode (WOLED) with excellent color stability is demonstrated. This device can achieve a peak forward-viewing power efficiency of 42.5 lm W-1, corresponding to an external quantum efficiency (EQE) of 19.3% and a current efficiency of 52.8 cd A(-1). Systematic studies of the dopants, host and dopant-doped host films in terms of photophysical properties (including absorption, photoluminescence, and excitation spectra), transient photoluminescence, current density-voltage characteristics, and temperature-dependent electroluminescence spectra are subsequently performed, from which it is concluded that the emission natures of Flrpic and (fbi)(2)Ir(acac) are, respectively, host-guest energy transfer and a direct exciton formation process. These two parallel pathways serve to channel the overall excitons to both dopants, greatly reducing unfavorable energy losses.
Resumo:
Four novel Ir-III and Pt-II complexes with cyclometalated ligands bearing a carbazole framework are prepared and characterized by elemental analysis, NMR spectroscopy, and mass spectrometry. Single-crystal X-ray diffraction studies of complexes 1, 3, and 4 reveal that the 3- or 2-position C atom of the carbazole unit coordinates to the metal center. The difference in the ligation position results in significant shifts in the emission spectra with the changes in wavelength being 84 nm for the Ir complexes and 63 nm for the Pt complexes. The electrochemical behavior and photophysical properties of the complexes are investigated, and correlate well with the results of density functional theory (DFT) calculations. Electroluminescent devices with a configuration of ITO/NPB/CBP:dopant/BCP/AlQ(3)/LiF/Al can attain very high efficiencies.
Resumo:
Structures and crystal form transition of the novel aryl ether ketone polymer containing meta-phenylene linkage: PEKEKK(T/I) were investigated by wide angle X-ray diffraction (WAXD), imaging plates (IPs) and small angle X-ray scattering (SAXS). The energy of activation of the decomposition reaction and degree of crystallinity of PEKEKK(T/I) were determined by WAXD and thermo-gravimetric analysis (TGA), respectively. Results obtained from WAXD and IPs show that crystal forms I and II coexist in the PEKEKK(T/I) samples isothermally cold crystallized in the temperature range from 180degreesC to 240degreesC and only form I occurs in PEKEKK(T/I) samples isothermally cold crystallized at 270degreesC. The radius of gyration (Rg), thickness of microregions with electron-density fluctuations (E) and distribution of particle sizes were investigated by SAXS.
Resumo:
We report a method for estimating the positions of charge transfer (CT) bands in Eu3+-doped complex crystals. The environmental factor ( he) influencing the CT energy is presented. he consists of four chemical bond parameters: the covalency, the bond volume polarization, the presented charge of the ligand in the chemical bond, and the coordination number of the central ion. These parameters are calculated with the dielectric theory of complex crystals. The relationship between the experimental CT energies and calculated environmental factors was established by an empirical formula. The calculated values are in good agreement with the experimental results. Such a relationship was confirmed by detailed analysis. In addition, our method is also useful to predict the charge-transfer position of any other rare earth ion.
Resumo:
Conformational analysis of 2,2'-bithiophene (BT) under the influence of an electric field (EF) constructed by point charges has been performed by using semi-empirical Austin Model 1 (AM1) and Parametric model number 3 (PM3) calculations. When the EF perpendicular to the molecular conjugation chain is applied, both AM1 and PM3 calculations show an energy increase of the anti-conformation. AM1 predicts that the global minimum shifts to syn-conformation when the EF strength is larger than a critical value. and PM predicts that the local minimum in anti-conformation vanishes. This kind of EF effect has been ascribed to the EF and dipole moment interaction.
Resumo:
Single-colour and two-colour multiphoton resonant ionization spectra of uranium atom were studied extensively with a Nd: YAG laser-pumped dye laser atomic beam apparatus time-of-flight mass spectrometer in our laboratory. The energy locations of high-lying odd-parity levels in the region 33 003-34 264 cm(-1),mearured by a two-colour three-step ionization technique, were reported here. The angular momentum quantum number J was uniquely assigned for these levels by using angular momentum selection rules.
Resumo:
Three new amphiphilic rare earth complexes with only two organic long chains Ln (MOP)(2)Cl (MOP=monooctadecyl phthalate, Ln=Eu, Tb, Gd) were synthesized and characterized by elemental analysis. The complexes (Eu, Tb) showed good luminescence property with long fluorescence lifetime, whereas the intensity and lifetime of Tb complex are greater than those of Eu complex, By measuring the triplet energy levels of ligand based on energy transfer mechanism, above phenomena have been well explained. The Langmuir films of the complexes on the air/water interface were also studied and the results show that all of them have good film-forming property.
Resumo:
The applications of new topological indices A(x1)-A(x3) suggested in our laboratory for the prediction of Gibbs energy values of phase transfer (water to nitrobenzene) of amine ions are described with satisfactory results. Multiple regression analysis and neural network were employed simultaneously in this study.
Resumo:
Correlation analysis of the standard Gibbs energy for a series of tetraalkylammonium ions, protonated substituted ethylenediamine derivatives and protonated aromatic amine derivatives using three new topological indices Ax1, Ax2 and Ax has been studied. T
Resumo:
This paper deals with the correction of mode II strain energy release rate, G(II), of composite laminates measured with the end-notched flexure (ENF) specimen. A derivation is given of the expressions for compliance and strain energy release rate, in whic
Resumo:
The Angular Overlap Model (AOM) is applied to the LaOX:Eu3+(X = Cl, Br, I) series involving sigma, pi, delta and phi effects based on the experimental energy levels. The calculations are made in two cases. (1) Consider oxygen and halogen having the same bond-length. (2) Consider the real structure. In both cases, the results show that for sigma-bonding parameters, the values of e(sigma) decrease with increasing charge number of halogen, i.e. Cl- > Br- > I-, this indicates that the bonding ability also decreases with this order. The absolute values of each parameter are much larger than zero-therefore they all must be included in a practical analysis. In the second case, the values of the e(pi) parameter are negative, which means a ''back-bonding'' is formed, and this is profitable for the formation of sigma-bonding, usually referred to as ''synergic effect''.
Resumo:
The angular overlap model (AOM) is applied to 4f6 electron systems. The crystal field parameters are interpreted and covalency between 4f electrons and ligands is investigated based on the experimental energy levels. For Eu3+:Ln2O2S (Ln = Lu, Y, Gd, La) crystal series, we adopt two computational schemes. First of all, we assume that the distances to all ligands are equal, and then the distances to all ligands are divided into two groups, namely, oxygens as one group, sulfurs as the other. Of course, much information about covalency will be obtained from the latter case. Obviously, our results show that the covalency of Ln-O bonding is stronger than that of Ln-S bonding in line with much shorter bondlength for the former than that for the latter. The two schemes yield the same results, that is, for sigma and pi bonding, ligands are strong donors as well as sigma, pi effects are dominant over delta, phi effects.
Resumo:
The crystal structure of erbium (III) complex of benzene acetic acid is reported. The complex crystallizes in the monoclinic space group P2(1)/a with a = 0,9008(3)nm, b=1.4242(5) nm, c=1.8437(7) nm, beta=98.80(3)degrees, V = 2.337(1) nm(3), Z = 4. The mechanism of thermal decomposition of complex has been studied by TG-DTG-DTA. The activation energy for dehydration reaction has been calculated by Freeman Carroll method. The enthalpy change for dehydration and phase change process has been determined.