107 resultados para dichotomous branching
Resumo:
Isothermal and non-isothermal crystallization kinetics of three metallocene-catalysed short-chain-branched polyethylene (SCBPE) fractions with different degree of branching were investigated by using differential scanning calorimetry (DSC). Narrow molecular weight fractions (M-w = 20,000 and M-w/M-n < 1.15) are used and the degree of branching (CH3 per 1000C) are 1.6, 10.4, 40 respectively. The regime I - II transition temperature are 119.8
Resumo:
Metallocene, a newer generation of commercial polymerization catalysts for polyolefins, is best known for its "single sitednss", and the intermolecular structural homogeneity of metallocene polyethylene copolymer is a very interesting research issue. The molecular segregation effects on the crystallization, melting and crystal morphologies of metallocene SCBPE have been investigated with DSC and TEM. The multiple endothermic peaks were observed in the DSC thermograms during heating experiments. The heterogeneity increases as branching content increases, the lamellae becomes thinner, and lamellae distribution becomes broader. Both macroscopic segregation (between two crystal aggregates) and microscopic segreation (between two lamellae) have been observed when SCBPE crystallized from phase separated melt.
Resumo:
The absorption spectra of Er:YAG (YAG, yttrium-aluminium-garnet) crystals containing different concentrations of the trivalent erbium ion were measured and the spectral intensity parameters were calculated from these experimental spectra using the Judd-Ofelt model. The results indicate that the phenomenological intensity parameters, OMEGA(lambda) (lambda = 2, 4 and 6), vary as a function of the concentration of the Er3+ ion in the Er:YAG crystal, but no variation in the fluorescence-branching ratios as a function of the concentration of the Er3+ ion is found. An empirical formula is proposed to describe the relationship between the spectral intensity parameters and the Er3+ ion concentration in the Er:YAG crystal. The spectral intensity parameters exhibit a maximum in Er:YAG crystals containing about 1-1.5 at.% Er3+ ion. The effect of the Er3+ ion concentration on the spectral intensity parameters may be attributed to the inhomogeneous lattice distortion in the cell of the Er:YAG crystal caused by the dopant erbium ions.
Resumo:
Changes induced in the crystal structure of PTFE by irradiation at different temperatures have been investigated. In the dose and temperature range examined, the density of PTFE was observed to increase continuously with increasing dose due to the radiation-induced increase in crystallinity, while after post-irradiation annealing at 380-degrees-C, the density was observed to increase for samples irradiated at 20-degrees-C, and to begin to decrease after a certain dose for samples irradiated at 150 and 200-degrees-C. On the basis of the observation of radiation-induced separation of the melting peak of PTFE and its stability relative to the change in the rate of heating, the observed decrease in density was explained as being due to the radiation-induced crosslinking and/or branching inhibiting the process of crystallization and existing in the crystalline region as defects.
Resumo:
In this work the radiation-induced structural changes in F-46 were studied by XPS. In carbon-1s spectra of a highly crosslinked F-46 sheet, the slight increase observed in relative area under the peak due to CF3 was explained by the radiation-induced scission of polymer chains. The peak at 287.6 eV appearing in the spectra caused by ionizing radiation was attributed to carbon structures without primary fluorine substituents, in both branching and unsaturated structures, while that at 289.3 eV was assigned to = CF groups in mid-chain double bonds.
Resumo:
In this work PTFE sheets irradiated with gamma-rays at 150-degrees-C and 200-degrees-C were studied using x-ray photoelectron spectroscopy (XPS). The main structural changes in PTFE due to radiation are the formation of CF3 and CF groups. An irradiation temperature dependence of the relative content of the three kinds of groups in irradiated PTFE was observed. The CF3 groups, especially when irradiation is carried out a lower temperatures, can defluorinate in the same manner as previosly reported for CF2 groups. The CF groups, on the other hand, are observed to increase with increasing irradiation dose and irradiation temperature; the latter was explained as due to an increase in branching structures.
Resumo:
Generally speaking, productions of thermally-assisted and stepwise fluorescence are the consequence of energy transfer caused by particle collision. In some circumstances, energy transfer caused by particle collision is considerably intense. We have ever used the fluorescence produced by energy transfer of particle collision to measure the branching ratios in the atomic transitions and acquired good results. To our knowledge, the systematic in
Resumo:
Effect of temperature and irradiance on growth and reproduction of Enteromorpha prolifera that bloomed offshore along the Qingdao coast in summer 2008, was studied. It was showed that E. prolifera propagated mainly asexually with specific growth rate (SGR) of 10.47 at 25A degrees C/40 mu mol m(-2)s(-1). Under this condition, gametes with two flagellate formed and released in 5 days. At the beginning of the development, the unicell gamete divided into two cells with heteropolarity, and then the apical cell developed into thalli primordial cells, whereas the basal cell developed into rhizoid primordial cells. In 8-day culture, the monoplast gamete developed into juvenile germling of 240 mu m in length. Unreleased gametes can develop directly within the alga body. E. prolifera could either reproduce through lateral branching or fragmenting except apomixis revealed by Microscopic observation. On aged tissue of E. prolifera, although the degraded pigments partially remained in faded algal filaments, numerous vegetative cells could still divide actively in the algal tissues.
Resumo:
Two marine urostylid ciliates, Holosticha hamulata n. sp. and Holosticha heterofoissneri Hu and Song, 2001, were investigated using live observation and protargol impregnation. Both species were isolated from Korean intertidal sediments of the Yellow Sea. Holosticha hamulata measures about 150 x 25 pro in vivo, and is characterized by a tripartite body shape with a narrow head, an inflated trunk, and a tail that distally projects ventrally forming a hook-like structure. It is the characteristic body shape that distinguishes H. hamulata distinctly from congeners. Holosticha hamulata differs from H. heterofoissneri, possibly the nearest relative, also by the location of the contractile vacuole (ahead of mid-body versus near posterior body third) and the configuration of the macronucleus (on average, 33 scattered nodules assuming a Y-shape versus 17 nodules that may form a U shape). The average number of the macronuclear nodules is a pronounced feature showing great consistency in populations of each species. However, their arrangement is variable in H. heterofoissneri where the nodules are basically scattered or connected by fine fibers forming an elongate U-shape. The location of the contractile vacuole as a taxonomic feature is discussed and a dichotomous key to the species of Holosticha sensu stricto is provided.
Resumo:
Laurencia nanhaiense sp. nov. (Rhodomelaceae, Rhodophyta) is described from Hainan and Guangdong Provinces, China. The new species clearly displays one of the defining features of the genus, viz. four periaxial cells per vegetative axial segment. It differs from other closely related species in having a combination of features such as terete axes from a basal system composed of a primary, discoid holdfast and a secondary attachment to give rise to many short rhizoids, branching oppositely and alternately, irregularly tristichous or subverticillately polystichous, having more curve branches with very sparse, adventitious ultimate branchlets, non-projecting superficial cortical cells at the apices of ultimate branchlets, presence of longitudinally oriented secondary pit-connections between contiguous superficial cortical cells, absence of lenticular thickenings in the walls of medullary cells, parallel arrangement of tetrasporangia along the axis of stichidia, and presence of intercellular spaces between medullary cells.
Resumo:
通过对多年生植物黄帚橐吾(Ligularia virgaurea)在四个不同海拔梯度下的克隆生长行为进行研究,结果表明:(1)资源水平(土壤养分)、干扰和群落性质影响间隔物(spacer)长度的变化.在第一和第四海拔梯度中(土壤养分较丰富)间隔物长度较短,而在第二和第三海拔梯度中(土壤养分较贫乏)间隔物长度较长,说明其能对资源水平和生境优劣作出反应.(2)分枝强度(branching intensity)随资源水平的增加而上升.(3)在高海拔、寒冷和资源较丰富的生境中,其生物量的投资偏向于地下部分生物量,说明黄帚橐吾的资源分配方式受到环境资源条件和群落性质的影响.
Resumo:
Twenty-two populations of seven species of Cremanthodium from high altitude regions of western China were observed karyologically. C. ellisii, C. microglossum, C. brunneo-pilosum, C. stenoglossum, C. discoideum and C. lineare all had the same chromosome number of 2n=58 whereas C. humile had 2n=60. All chromosome numbers of these species are documented here for the first time. The basic number of x=30 is new for this genus. The karyotypes of all species belong to 2A type according to Stebbins' asymmetry classification of karyotypes. Two basic chromosome numbers, x=30 and x=29 in Cremanthodium, correspond exactly to two branching patterns in this genus, sympodial versus monopodial. The systematic and taxonomic statuses of the sympodial species need further study. The karyomorphological data provide no support to the sectional subdivision in Cremanthodium. (C) 2001 The Linnean Society of London.
Resumo:
Phylogenetic relationships of six species of Ochotona were investigated using mitochondrial DNA (mtDNA) restriction-site analysis. The phylogenetic tree constructed using PAUP was based on 62 phylogenetically informative sites with O. erythrotis designated as an outgroup. Two clades were evident. One contained O. curzoniae, O. huangensis, and O. thibetana. in the second, O. daurica was a sister taxon of O. cansus. The five species appear to come from different maternal lineages. The branching structure of the tree and sequence divergence confirm that huangensis and cansus are distinct species, and that mol-osa is a synonym of O. cansus rather than O. thibetana. Divergence time, estimated from genetic distances, indicates that the ancestors of the two maternal lineages diverged ca. 6.5 x 10(6) years ago. O. curzoniae diverged from O. huangensis, and O. daurica diverged from O. cansus, at about the same time (ca. 3.4 x 10(6) years ago). These data suggest a period of rapid radiation of the genus Ochotona in China, perhaps during the late Pliocene. These calculations correspond roughly to tectonic events and environmental changes in China throughout this period, and appear to be substantiated by the fossil record.
Resumo:
In this paper, taking Madong district of Huanghua depression as a case, based on the theory of sequence stratigraphy, sedimentology, reservoir geology and geophysics, according to core analysis, seismic attribute analysis, logging constrained inversion, multi-data correlation of strata, reservoir modeling, etc. the lower and middle first member of Shahejie formation of the study area was forecasted and evaluated. As a result, a number of reservoir prediction and remaining oil distribution methods suitable to oil exploitation of gravity flow channel reservoir are presented. Scientific foundation is provided to the next adjustment of development program and exploitation of the remaining oil. According to high resolution sequence stratigraphy theory, precise stratigraphic framework was founded, the facies types and facies distribution were studied under the control of stratigraphic framework, the technologies of seismic attribute abstraction and logging constrained inversion. Result shows that gravity flow channel, as the main facies, developed in the rising period of base-level cycle, and it was formed during the phase of contemporaneous fault growth. As the channel extends, channel width was gradually widened but thickness thined. The single channels were in possession of a great variety of integrated modes, such as isolated, branching off, merging and paralleling, forming a kind of sand-mud interblending complex sedimentary units. Reservoir quality differs greatly in vertical and horizontal direction, and sedimentary microfacies is main controlling factor of the reservoir quality. In major channel, deposition thickness is great, and petrophysical property is well. While in marginal channel, reservoir is thinner, and petrophysical property is unfavorable. Structure and reservoir quality are main factors which control the oil and gas distribution in the study area. On the basis of the research about the reservoir quality, internal, planar and 3-D reservoir heterogeneities are characterized, and the reservoir quality was sorted rationally. At last, based on the research of reservoir numerical simulation of key well group, combined with reservoir performance analysis and geological analysis above, remaining oil distribution patterns controlled by internal rhythm of gravity flow channel were set up. Through this research, a facies-restrained reservoir prediction method integrating multi-information was presented, and potential orientation of remaining oil distribution in gravity flow channel reservoir is clarified.
Resumo:
The photodissociation of CH2BrCH2Cl at 266 nm has been investigated on the universal crossed molecular beam machine. The primary dissociation step leads exclusively to the formation of CH2CH2Cl radicals and Br atoms in the electronic ground state as well as in the spin-orbit excited state, with a branching ratio 2 +/- 1:8 +/- 1. Photofragment total c.m. translational energy distribution P(E-t) has been obtained and about 64% of the available energy is partitioned into translational energy for Br channel and about 28.5% of the available energy is partitioned into translational energy for Br* channel. The anisotropy parameters are determined to be beta(Br*) = 0.8 +/- 0.2 and beta(Br) = -0.6 +/- 0.2, respectively. Some CH2CH2Cl radicals with large internal excitation (corresponding to formation of ground state Br channel) may undergo secondary dissociation to form CH2CH2 +/- Cl. The experimental results are discussed in terms of a model that involves the initial excitation of two repulsive electronic states: one from an parallel transition to the (3)Q(0) state, and the other from a perpendicular transition to the (3)Q(1), (1)Q states. (C) 1999 Elsevier Science B.V. All rights reserved.